ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag big pharma disease medicine developmental biology genetics genomics

Two sets of identical twin children sitting
Identical Twins Carry Distinctive Epigenetic Marks: Study
Chloe Tenn | Sep 30, 2021 | 2 min read
Researchers found more than 800 sites in the genome where the twins bore the same chemical tags.
Cropped view of senior man playing with puzzles
A Rare Genetic Mutation Protects Against Alzheimer's Disease
Hannah Thomasy, PhD, Drug Discovery News | Sep 17, 2023 | 4 min read
Data from a highly resilient individual guided researchers to new potential therapeutic targets.
Valerie Arboleda Uses Big Data to Unravel the Biology of a Rare Disease
Shawna Williams | May 1, 2018 | 3 min read
The UCLA geneticist examines how defects in a histone protein lead to symptoms throughout the body.
Single Nucleotide Polymorphisms: Big Pharma Hedges its Bets
Eugene Russo | Jul 18, 1999 | 7 min read
SNP CENTRAL: A genetics researcher takes to the bench at the Wellcome Trust's Sanger Centre in Cambridge, England. The sequencing center and its London sponsor provided key leadership in the SNP Consortium, a public-private venture to find and map 300,000 single nucleotide polymorphisms. The Wellcome Trust helped entice 10 pharmaceutical firms to join the consortium by putting up $14 million of the project's estimated $45 million price tag. The Sanger Centre will provide much of the radiation h
2022 Top 10 Innovations 
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
3d rendered medically accurate illustration of a human embryo anatomy
The Ephemeral Life of the Placenta
Danielle Gerhard, PhD | Dec 4, 2023 | 10+ min read
Recent advances in modeling the human placenta, the least understood organ, may inform placental disorders like preeclampsia.
Preimplantation Genetic Diagnosis: The Next Big Thing?
Ricki Lewis | Nov 12, 2000 | 9 min read
Courtesy of David Hill, ART Reproductive Center Inc.Two separated blastomeres subjected to FISH analysis to check the chromosomes. In early October, preimplantation genetic diagnosis (PGD) made headlines when a Colorado couple used assisted reproductive technology (ART) to have a baby named Adam, whose umbilical cord stem cells could cure his six-year-old sister Molly's Fanconi anemia.1 When Adam Nash was a ball of blastomere cells, researchers at the Reproductive Genetics Institute at Illinois
Guts and Glory
Anna Azvolinsky | Apr 1, 2016 | 9 min read
An open mind and collaborative spirit have taken Hans Clevers on a journey from medicine to developmental biology, gastroenterology, cancer, and stem cells.
The Rodent Wars: Is a Rat Just a Big Mouse?
Ricki Lewis | Jul 4, 1999 | 5 min read
Sometimes it seems as if genome projects are cropping up everywhere.1 But until costs come down, limited resources are being largely concentrated into what Joseph Nadeau, professor of genetics at Case Western Reserve University School of Medicine, calls "the genome seven," an apples-and-oranges list of viruses, bacteria, fungi, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and mouse, with Homo sapiens in its own category.2 Researchers widely acknowledge that in the rod

Run a Search

ADVERTISEMENT