ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag big pharma ecology developmental biology genetics genomics

Single Nucleotide Polymorphisms: Big Pharma Hedges its Bets
Eugene Russo | Jul 18, 1999 | 7 min read
SNP CENTRAL: A genetics researcher takes to the bench at the Wellcome Trust's Sanger Centre in Cambridge, England. The sequencing center and its London sponsor provided key leadership in the SNP Consortium, a public-private venture to find and map 300,000 single nucleotide polymorphisms. The Wellcome Trust helped entice 10 pharmaceutical firms to join the consortium by putting up $14 million of the project's estimated $45 million price tag. The Sanger Centre will provide much of the radiation h
A colorful mandarinfish on a reef
Genome Spotlight: Mandarinfish (Synchiropus splendidus)
Christie Wilcox, PhD | Oct 28, 2021 | 3 min read
The high-quality genome sequence sheds light on the colorful nature of these popular aquarium fish.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Preimplantation Genetic Diagnosis: The Next Big Thing?
Ricki Lewis | Nov 12, 2000 | 9 min read
Courtesy of David Hill, ART Reproductive Center Inc.Two separated blastomeres subjected to FISH analysis to check the chromosomes. In early October, preimplantation genetic diagnosis (PGD) made headlines when a Colorado couple used assisted reproductive technology (ART) to have a baby named Adam, whose umbilical cord stem cells could cure his six-year-old sister Molly's Fanconi anemia.1 When Adam Nash was a ball of blastomere cells, researchers at the Reproductive Genetics Institute at Illinois
Big Genes Are Back
Steve Bunk | Mar 17, 2002 | 7 min read
One more genomewide linkage map, this for a fish called the three-spined stickleback, was announced late last year to not much fanfare.1 But rather than just another stride in the march of genomics, the accomplishment heralded a new way to approach a question that has stumped evolutionary biologists for decades: What is the architecture of genetic change? The model organisms for which linkage maps have been created are often bred in the laboratory to express certain phenotypes, and they can reve
The Rodent Wars: Is a Rat Just a Big Mouse?
Ricki Lewis | Jul 4, 1999 | 5 min read
Sometimes it seems as if genome projects are cropping up everywhere.1 But until costs come down, limited resources are being largely concentrated into what Joseph Nadeau, professor of genetics at Case Western Reserve University School of Medicine, calls "the genome seven," an apples-and-oranges list of viruses, bacteria, fungi, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and mouse, with Homo sapiens in its own category.2 Researchers widely acknowledge that in the rod
"Big Cross" Lands Sticklebacks in the Spotlight
David Secko | Nov 7, 2004 | 5 min read
Marine threespine sticklebacks haven't morphologically changed in an estimated 10 million years, but their freshwater offshoots show no signs of slowing down. These 5-cm-long, freshwater fish have undergone a recent evolutionary change, variably losing their calcified body armor and retractable pelvic and dorsal spines. Remarkably, isolated marine and freshwater sticklebacks can be hybridized in the laboratory, a fact that is allowing researchers to analyze the genetics behind their natural dive
Pufferfish Genomes Probe Human Genes
Ricki Lewis | Mar 17, 2002 | 7 min read
It may be humbling to think that humans have much in common with pufferfish, but at the genome level, the two are practically kissing cousins. "In terms of gene complement, we are at least 90% similar—probably higher. There are big differences in gene expression levels and alternate transcripts, but if you're talking about diversity, number and types of proteins, then it's pretty difficult to tell us apart," says Greg Elgar, group leader of the Fugu genome project at the Medical Research C
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
Heading for the BIG Time
Kenneth Buetow | Apr 1, 2008 | 9 min read
Heading for the BIG Time The NCI's bioinformatics network,caBIG, integrates cancer data fromacross the United states.Its goal: to speed the transition from research to therapy By Kenneth Buetow Artwork by Brendan Monroe Related Articles A sampling of how you can use caBIG caBIG in Action I was at the National Cancer Institute's (NCI) Intramural Program Scientific Retreat this past January listening to a plenary presentation by Cambridge Un

Run a Search

ADVERTISEMENT