ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag transposable elements genetics genomics neuroscience

a microscope image of a rotifer
Bacterial Enzyme Keeps Rotifers’ Transposable Elements in Check
Christie Wilcox, PhD | Mar 3, 2022 | 5 min read
Jumping genes in bdelloid rotifers are tamped down by DNA methylation performed by an enzyme pilfered from bacteria roughly 60 million years ago, a study finds.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
artistic representation of jumping gene
Jumping Genes Can Cause Movement Disorder: Study
Sophie Fessl, PhD | Sep 13, 2022 | 3 min read
Mice with overactive LINE-1 retrotransposons in their brains exhibit movement difficulties, suggesting the genetic elements may play a role in ataxia in humans. 
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
A fishing cat with a fish in its mouth
Genome Spotlight: Fishing cat (Prionailurus viverrinus)
Christie Wilcox, PhD | Dec 22, 2022 | 5 min read
A high-quality reference genome for this vulnerable feline may help scientists understand why they’re so prone to transitional cell carcinoma in captivity.
A desert locust (Schistocerca gregaria) on sand
Genome Spotlight: Desert Locust (Schistocerca gregaria)
Christie Wilcox, PhD | Jul 21, 2022 | 4 min read
A chromosome-scale genome sequence for this infamous agricultural pest could help mitigate its plagues.
A C-fern (Ceratopteris richardii) growing in a pot
Genome Spotlight: C-fern (Ceratopteris richardii)
Christie Wilcox, PhD | Sep 22, 2022 | 5 min read
Sequences for the model organism and two of its kin reveal how these plants got their oversized genomes.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
Research Notes
Brendan Maher | Aug 19, 2001 | 2 min read
Likening his discovery to a paleontologist unearthing a new dinosaur species, Vladimir Kapitonov, a staff scientist at the Genetic Information Research Institute, recently revealed a new class of transposable elements in eukaryotes. These jumping genes use rolling circle replication--an ancient process characteristic of some plasmid replication in bacteria--to copy and insert itself throughout entire genomes (V.V. Kapitonov, J. Jurka, "Rolling circle transposons in eukaryotes," Proceedings of th
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c

Run a Search

ADVERTISEMENT