ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag malaria prevention culture genetics genomics neuroscience

A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
A fruit bat in the hands of a researcher
How an Early Warning Radar Could Prevent Future Pandemics
Amos Zeeberg, Undark | Feb 27, 2023 | 8 min read
Metagenomic sequencing can help detect unknown pathogens, but its widespread use faces challenges.
Haydeh Payami is wearing a purple dress and an orange and pink scarf and standing in front of a whiteboard.
A Microbial Link to Parkinson’s Disease
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 6 min read
Haydeh Payami helped uncover the genetic basis of Parkinson’s disease. Now, she hopes to find new ways to treat the disease by studying the gut microbiome.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
2022 Top 10 Innovations&nbsp;
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
A mutated cell with a spiky membrane
Mutations in Autism-Linked Gene Cause Membrane Mischief
Holly Barker, PhD, Spectrum | Jan 26, 2023 | 4 min read
Inactivating TAOK1 prompts tentacle-like protrusions to form all over a neuron’s surface, revealing the gene’s role in molding the membrane.
Can Viruses in the Genome Cause Disease?
Katarina Zimmer | Jan 1, 2019 | 10+ min read
Clinical trials that target human endogenous retroviruses to treat multiple sclerosis, ALS, and other ailments are underway, but many questions remain about how these sequences may disrupt our biology.
SARS, Malaria, and the Microarray
Karen Hopkin(khopkin@the-scientist.com) | Nov 20, 2005 | 6 min read
It was the first Saturday of Spring 2003, and Joe DeRisi and his postdoc David Wang were staked out at either end of the University of California, San Francisco's Genentech Hall waiting for the FedEx truck.

Run a Search

ADVERTISEMENT