ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag single nucleotide polymorphism culture developmental biology cell molecular biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
GWAS, psychotic disorder, mood disorder, Q&A, bipolar disorder, schizophrenia, depression, sex differences
Genetic Variants Tied to Sex Differences in Psychiatric Disorders
Amanda Heidt | Mar 31, 2021 | 5 min read
The largest study of its kind identifies single nucleotide polymorphisms with disparate effects on men’s and women’s susceptibility to conditions such as bipolar disorder and schizophrenia.
Monoclonal Antibodies Find Utility In Cell Biology
Ricki Lewis | Dec 11, 1994 | 10+ min read
But, just as antibodies are finding increasing utility in cell biology, a new Food and Drug Administration classification for those products with clinical utility may affect researchers' access to the important technology (see accompanying story). Monoclonal History MAbs were born in 1975, when Georges Kohler and Cesar Milstein at the Medical Research Council Laboratories in Cambridge, England, fused two types of cells to form a hy
Monoclonal Antibodies Find Utility In Cell Biology
Ricki Lewis | Dec 11, 1994 | 10+ min read
But, just as antibodies are finding increasing utility in cell biology, a new Food and Drug Administration classification for those products with clinical utility may affect researchers' access to the important technology (see accompanying story). Monoclonal History MAbs were born in 1975, when Georges Kohler and Cesar Milstein at the Medical Research Council Laboratories in Cambridge, England, fused two types of cells to form a hy
Guts and Glory
Anna Azvolinsky | Apr 1, 2016 | 9 min read
An open mind and collaborative spirit have taken Hans Clevers on a journey from medicine to developmental biology, gastroenterology, cancer, and stem cells.
2022 Top 10 Innovations 
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo
Lasker Awards Target Developmental, Diagnostic Genetics
Rebecca Andrews | Sep 29, 1991 | 6 min read
The Laskers are among the most prestigious medical research awards in the world and among the oldest in the United States. Since they were first presented in 1944, 49 winners have gone on to win Nobel Prizes. Jordan Gutterman of the M.D. Anderson Cancer Center in Houston, executive vice president of the Albert and Mary Lasker Foundation, and director of the awards program since earlier this year, attributes the prestige of the awards to their longevity and to the "extraordinary quality&quo
Building Nanoscale Structures with DNA
Arun Richard Chandrasekaran | Jul 16, 2017 | 10+ min read
The versatility of geometric shapes made from the nucleic acid are proving useful in a wide variety of fields from molecular computation to biology to medicine.
Epithelial cells and fungal spores are marked with fluorescent dyes. Cells have an irregular shape and are shown in green and blue colors. Spores are spherical in shape and are labeled green if they are surrounded by p11 protein. A protein in mature phagosomes is labeled violet.
Fungal Spores Hijack a Host Protein to Escape Death
Mariella Bodemeier Loayza Careaga, PhD | Jun 20, 2023 | 3 min read
Uncovering the components used by Aspergillus fumigatus to avoid intracellular destruction broadens our understanding of the mold’s pathogenesis. 

Run a Search

ADVERTISEMENT