ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag quantitative pcr genetics genomics evolution developmental biology culture

PCR tubes placed into the 96-well loading chamber of a PCR thermocycler instrument.
Directing Superior Reagents for Better PCR Results
The Scientist and MilliporeSigma | Oct 2, 2023 | 3 min read
Directed evolution approaches are creating new reagents to help a tried-and-true technique reach new heights.
Layered visual representation of multiomics
Integrate and Innovate with NGS and Multiomics
The Scientist and Illumina | May 4, 2023 | 6 min read
Researchers across disciplines combine layers of discovery obtained with accessible NGS-based multiomics approaches.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c
PCR Primed To Spur Chain Of Applications
Holly Ahern | Jun 25, 1995 | 10+ min read
What would you do if your research interests revolved around obtaining DNA from a bacterium preserved for millions of years in the gut of a bee stuck in amber, matching up a murderer to crime- scene blood half a century old, or cloning genes from a 1,000- year-old mummy? Most scientists would first consider PCR--the polymerase chain reaction--as a technique for approaching problems such as these. With PCR, minute quantities of nucleic acids can be amplified millions of times into sufficient qua
Creative Emulsification
Sabrina Richards | Nov 1, 2012 | 8 min read
Enhancing data collection from emulsion PCR reactions: three case studies
Prospecting for Gold in Genome Gulch
Amy Adams | Apr 14, 2002 | 9 min read
The human genome is much like the American West of the 1850s: Everyone wants a piece of the pie. Similar to gold prospectors of 150 years ago, biotech and pharmaceutical companies, and even universities, are frantically searching for the nuggets of gold that will help them find the mother lode—a gene whose function is sufficiently marketable to make all of the preliminary research worthwhile. Companies that do strike gold get to introduce new classes of drugs to the market. Others hope to
Epigenetics: Genome, Meet Your Environment
Leslie Pray | Jul 4, 2004 | 10+ min read
©Mehau Kulyk/Photo Researchers, IncToward the end of World War II, a German-imposed food embargo in western Holland – a densely populated area already suffering from scarce food supplies, ruined agricultural lands, and the onset of an unusually harsh winter – led to the death by starvation of some 30,000 people. Detailed birth records collected during that so-called Dutch Hunger Winter have provided scientists with useful data for analyzing the long-term health effects of prenat
The Rodent Wars: Is a Rat Just a Big Mouse?
Ricki Lewis | Jul 4, 1999 | 5 min read
Sometimes it seems as if genome projects are cropping up everywhere.1 But until costs come down, limited resources are being largely concentrated into what Joseph Nadeau, professor of genetics at Case Western Reserve University School of Medicine, calls "the genome seven," an apples-and-oranges list of viruses, bacteria, fungi, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and mouse, with Homo sapiens in its own category.2 Researchers widely acknowledge that in the rod
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo

Run a Search

ADVERTISEMENT