ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag nucleotides developmental biology

Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Notable
Jeffrey Perkel | Jun 9, 2002 | 3 min read
Z. Mourelatos et al., "miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs," Genes & Development, 16[6]:720-8, March 15, 2002. "A novel ribonucleoprotein (RNP) complex in HeLa cells was identified that contains two proteins implicated in spinal muscular atrophy (SMA), eIF2C2 (a member of the Argonaute family), and numerous small RNAs ~22 nucleotides in length. The finding that microRNAs (miRNAs) associate with eIF2C2 ties together genetic findings demonstrating that Argona
2020 Top 10 Innovations
The Scientist | Dec 1, 2020 | 10+ min read
From a rapid molecular test for COVID-19 to tools that can characterize the antibodies produced in the plasma of patients recovering from the disease, this year’s winners reflect the research community’s shared focus in a challenging year.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo
Master of the Cell
Judy Lieberman | Apr 1, 2010 | 10+ min read
By Judy Lieberman Master of the Cell RNA interference, with its powerful promise of therapy for many diseases, may also act as a master regulator of most—if not all—cellular processes. RNA silencing. Computer artwork showing a length of RNA (yellow with red rings) bound to an RNA-induced silencing complex (RISC). © Medi-Mation Ltd / Photo Researchers, Inc. ne of the biggest surprises in biology in the past d
New Technologies Shed Light on Caveolae
Ben Nichols | Jun 1, 2018 | 10+ min read
The functions of the cellular invaginations identified more than half a century ago are now beginning to be understood in detail.
Mapping Traits to Genes with CRISPR
Catherine Offord | May 5, 2016 | 4 min read
Researchers develop a technique to direct chromosome recombination with CRISPR/Cas9, allowing high-resolution genetic mapping of phenotypic traits in yeast.
Epigenetics: Genome, Meet Your Environment
Leslie Pray | Jul 4, 2004 | 10+ min read
©Mehau Kulyk/Photo Researchers, IncToward the end of World War II, a German-imposed food embargo in western Holland – a densely populated area already suffering from scarce food supplies, ruined agricultural lands, and the onset of an unusually harsh winter – led to the death by starvation of some 30,000 people. Detailed birth records collected during that so-called Dutch Hunger Winter have provided scientists with useful data for analyzing the long-term health effects of prenat
Ribozymes: Hearkening Back to an RNA World
Jeffrey Perkel | Sep 15, 2002 | 9 min read
Illustration: Ned Shaw LIKE MOLECULAR TOY-MAKERS, ribozyme researchers create tools with evolutionary, diagnostic, and therapeutic applications. Nearly 20 years ago, Tom Cech and Sidney Altman discovered that some naturally occurring RNAs could perform enzymatic reactions, earning these researchers the 1989 Nobel Prize in chemistry. Scientists have now identified several examples of RNA enzymes, or ribozymes. Most make or break the phosphodiester bonds in nucleic acid backbones, but some
Assessing Differential Gene Expression
Barbara Cunningham | Nov 25, 2001 | 9 min read
As the complete human genome sequence emerges, research shifts from questions of genomics to those of proteomics--determining the function of individual gene products and mapping global gene expression patterns. Gene expression patterns change continually during the course of tissue development and differentiation. The expression of different gene products at any given time within a particular cell defines the cell's characteristics and helps determine how it will react to external stimuli. Alte

Run a Search

ADVERTISEMENT