ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag genetics genomics microbiology culture cell molecular biology evolution ecology

A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
A scanning electron micrograph of the picozoan Picomonas judraskeda
Picozoans Are Algae After All: Study
Christie Wilcox, PhD | May 6, 2021 | 5 min read
Phylogenomics data place the enigmatic plankton in the middle of the algal family tree, despite their apparent lack of plastids—an organelle characteristic of all other algae.
A C-fern (Ceratopteris richardii) growing in a pot
Genome Spotlight: C-fern (Ceratopteris richardii)
Christie Wilcox, PhD | Sep 22, 2022 | 5 min read
Sequences for the model organism and two of its kin reveal how these plants got their oversized genomes.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
The structure of a biological cell (macro)
The Long and Winding Road to Eukaryotic Cells
Amanda Heidt | Oct 17, 2022 | 10+ min read
Despite recent advances in the study of eukaryogenesis, much remains unresolved about the origin and evolution of the most complex domain of life.
a microscope image of a rotifer
Bacterial Enzyme Keeps Rotifers’ Transposable Elements in Check
Christie Wilcox, PhD | Mar 3, 2022 | 5 min read
Jumping genes in bdelloid rotifers are tamped down by DNA methylation performed by an enzyme pilfered from bacteria roughly 60 million years ago, a study finds.
Landscape illustration
Horizontal Gene Transfer Happens More Often Than Anyone Thought
Christie Wilcox, PhD | Jul 5, 2022 | 10+ min read
DNA passed to and from all kinds of organisms, even across kingdoms, has helped shape the tree of life, to a large and undisputed degree in microbes and also unexpectedly in multicellular fungi, plants, and animals.

Run a Search

ADVERTISEMENT