ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag cell molecular biology evolution genetics genomics funding policy

Cartoon of scientist deciding whether to go down the path of well-studied genes or that of the neglected genes. 
Stepping Into the Unknome
Danielle Gerhard, PhD | Mar 8, 2024 | 5 min read
A database of neglected genes may help unlock the mysteries hiding in the overlooked regions of the proteome.
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
Layered visual representation of multiomics
Integrate and Innovate with NGS and Multiomics
The Scientist and Illumina | May 4, 2023 | 6 min read
Researchers across disciplines combine layers of discovery obtained with accessible NGS-based multiomics approaches.
2022 Top 10 Innovations 
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
A C-fern (Ceratopteris richardii) growing in a pot
Genome Spotlight: C-fern (Ceratopteris richardii)
Christie Wilcox, PhD | Sep 22, 2022 | 5 min read
Sequences for the model organism and two of its kin reveal how these plants got their oversized genomes.
A desert locust (Schistocerca gregaria) on sand
Genome Spotlight: Desert Locust (Schistocerca gregaria)
Christie Wilcox, PhD | Jul 21, 2022 | 4 min read
A chromosome-scale genome sequence for this infamous agricultural pest could help mitigate its plagues.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
Whither Cell Biology?
Richard Hynes | Dec 10, 2000 | 6 min read
Illustration: A. Canamucio Cell biology has become the third overlapping core discipline of modern biology, along with biochemistry and genetics. Progress over the century--since E.B. Wilson's classic book1 elegantly framed many of the questions of cell biology--has relied on advances in technology and yielded fascinating insights into the ways that cells work. We now have an unprecedented understanding of the structure, organization, and functions of cells. As the number of completed ge
a microscope image of a rotifer
Bacterial Enzyme Keeps Rotifers’ Transposable Elements in Check
Christie Wilcox, PhD | Mar 3, 2022 | 5 min read
Jumping genes in bdelloid rotifers are tamped down by DNA methylation performed by an enzyme pilfered from bacteria roughly 60 million years ago, a study finds.

Run a Search

ADVERTISEMENT