Advertisement
Panasonic
Panasonic

Infographics

» biochemistry, cancer and neurodegeneration

Most Recent

image: Ubiquitin Chains in Action

Ubiquitin Chains in Action

By | July 1, 2012

Present in every tissue of the body, ubiquitin appears to be involved in a dizzying array of functions, from cell cycle and division to organelle and ribosome biogenesis, as well as the response to viral infection. The protein plays at least two role

0 Comments

image: Ubiquitin basics

Ubiquitin basics

By | July 1, 2012

Despite its discovery as a protein that seems to show up everywhere, at least in eukaryotic cells, researchers are only beginning to scratch the surface of all of the cellular functions involving ubiquitin. 

0 Comments

image: Telomere Basics

Telomere Basics

By | May 1, 2012

Telomeres are repetitive, noncoding sequences that cap the ends of linear chromosomes. They consist of hexameric nucleotide sequences (TTAGGG in humans) repeated hundreds to thousands of times. 

4 Comments

image: Designing Transition-State Inhibitors

Designing Transition-State Inhibitors

By | May 1, 2012

A transition-state mimic has the power to bind an enzyme at its tipping point as strongly as any available inhibitor and more strongly than most, preventing enzymatic activity. 

1 Comment

image: Suspected Effects of Vitamin D

Suspected Effects of Vitamin D

By | March 1, 2012

Vitamin D has a variety of actions in the body. It binds to the vitamin D receptor (VDR), which then binds to the retinoid X receptor (RXR) and activates the expression of numerous genes. 

0 Comments

image: Swallowing the Surgeon

Swallowing the Surgeon

By | October 1, 2011

In fewer than 15 years, nanomedicine has gone from fantasy to reality.

0 Comments

image: Lost in Space

Lost in Space

By | September 1, 2011

Looking for a more realistic way to study memory, we turned to place cells­­—­a network of cells that record a rat’s memory of an environment. 

0 Comments

image: Molecular Learning

Molecular Learning

By | September 1, 2011

Long-term potentiation (LTP), discovered in the 1970s, was later shown to be the molecular basis of memory. 

0 Comments

image: The Seat of Memory

The Seat of Memory

By | September 1, 2011

Early on, researchers had learned that the hippocampus was the structure in the brain where long-term memories were created and stored, but it was not known whether the different cell types within this structure might be more or less susceptible to the aging process.

0 Comments

image: The Cytokine Cycle

The Cytokine Cycle

By | September 1, 2011

The initiating cause of Alzheimer’s disease is still unknown. However, from our studies it’s clear that many types of neuronal damage—­­from traumatic brain injury, to epilepsy, infection, or genetic predisposition—­can activate brain immune cells—microglia and astrocytes-- promoting them to produce IL-1 and S100 inflammatory cytokines.

12 Comments

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Advertisement
NeuroScientistNews
NeuroScientistNews