ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag conservation biology cell molecular biology evolution

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
Molecular Biology
The Scientist Staff | Aug 22, 1993 | 2 min read
M. Leid, P. Kastner, R. Lyons, et al., "Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently," Cell, 68:377-95, 1992. Mark Leid (Oregon State University, Corvallis): "The diverse effects of retinoic acid (RA) on development, cellular growth and differentiation, and homeostasis are mediated by two families of RA receptors that arose independently during evolution and belong to the steroid/thyroid hormone super
Molecular Biology
The Scientist Staff | Dec 9, 1990 | 1 min read
M. Horikoshi, C.K. Wang, H. Fujii, J.A. Cromlish, et al., "Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box," Nature, 341, 299-303, 28 September 1989. Masami Horikoshi (Rockefeller University, New York): "This paper describes the cloning of the gene encoding the TATA box [a conserved sequence of bases]-binding factor TFIID [transcription factor IID], which we and others have shown to be a key factor in both basic promoter
Molecular Biology
The Scientist Staff | Mar 1, 1992 | 2 min read
D.W. Nebert, D.R. Nelson, M.J. Coon, R.W. Estabrook, et al., "The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature," DNA and Cell Biology, 10:1-14, 1991. Daniel W. Nebert (University of Cincinnati Medical Center): "This review is the third in a series of comprehensive, up- to-date compilations of data about members of the large cytochrome P450 gene superfamily. It serves to organize a large--and growing--body of sequencing and mapping data on 154 P450 genes
Molecular Biology
The Scientist Staff | Jan 20, 1991 | 3 min read
C.K. Glass, S.M. Lipkin, O.V. Devary, M.G. Rosenfeld, "Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer," Cell, 59, 697-708, 17 November 1989. Christopher K. Glass (School of Medicine, University of California, San Diego, La Jolla): "Retinoic acid receptors appear to exert profound effects on vertebrate development by binding to target genes and altering the rates at which they are transcribed in response to retinoic acid. Because t
MOLECULAR BIOLOGY
Paris | Jul 19, 1992 | 1 min read
Michel Philippe (Universite de Rennes, Rennes Cédex, France): "In yeast, two critical points of the cell cycle (Start and G1/S) are regulated by the same protein. This protein, called p34cdc2, is coded by the genes cdc2 in Schizzosaccharomyces pombe and CDC28 in Saccharomyces cerevisiae. By complementation of yeast mutants, proteins from higher eucaryotes homologous to cdc2 have been cloned. Moreover, p34cdc2 has been shown to be one of the main components of the well-known M-phase promotin
DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
Molecular Biology
The Scientist Staff | Feb 17, 1991 | 3 min read
R.J. Bandziulis, M.S. Swanson, G. Dreyfuss, "RNA-binding proteins as developmental regulators," Genes and Development, 3, 431-7, April 1989. Gideon Dreyfuss (University of Pennsylvania School of Medicine, Philadelphia): "Protein structural comparisons led to the discovery of identifying and unifying features shared by RNA-binding proteins of the nucleus and cytoplasm. Many of these ribonucleoproteins contain an RNA-binding domain (RBD) of approximately 90 amino acids. This amino acid sequence
Molecular Biology
The Scientist Staff | Feb 20, 1994 | 2 min read
S. Matsuda, H. Kosako, K. Takenaka, K. Moriyama, H. Sakai, T. Akiyama, Y. Gotoh, E. Nishida, "Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade," The EMBO Journal, 11:973-82, 1992. Eisuke Nishida (Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Japan): "MAP kinases have been described as serine/threonine kinases that are acti

Run a Search

ADVERTISEMENT