ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag protein aggregating culture

Clues to cell death in ALS
Susan Brown(meldahlbrown@hotmail.com) | Oct 31, 2005 | 3 min read
Aggregations of misfolded proteins foretell cell death in ALS model
Abcam’s new premium-grade bioactive proteins, for drug discovery, development and manufacturing
Abcam | Nov 12, 2020 | 1 min read

Abcam’s new premium-grade bioactive proteins are highly-active growth factors and cytokines manufactured and designed to meet the specific needs of cell culture, including cell and gene therapy and regenerative medicine. 

Fluorescence microscopy image of cells expressing fluorescent biosensors. Green and magenta fluorescence is observed outside of the cell nuclei.
Choosing Fluorescent Reagents for Every Live Cell Application
The Scientist and MilliporeSigma | Nov 30, 2022 | 4 min read
Scientists gain unique insights into active biological processes with specific fluorescent probes, dyes, and biosensors.
a false color transmission electron microscope image of a neuronal cell body, with lysosomes colored dark green
Scientists Uncover Major Pathway Cells Use to Mend Leaky Lysosomes
Holly Barker, PhD | Oct 6, 2022 | 3 min read
Damaged lysosomes are repaired by a lipid-based signaling pathway dubbed PITT that could be targeted to treat neurodegenerative disease, its discoverers say.
The Proteasome: A Powerful Target for Manipulating Protein Levels
John Hines and Craig M. Crews | May 1, 2017 | 10+ min read
The proteasome’s ability to target and degrade specific proteins is proving useful to researchers studying protein function or developing treatments for diseases.
Yeast: An Attractive, Yet Simple Model
Gregory Smutzer | Sep 16, 2001 | 9 min read
Yeast possesses many characteristics that make it especially useful as a model system in the laboratory, including an entirely sequenced genome. Recently, a number of researchers published studies detailing the transition from genome sequencing to functional genomics. Notably, these scientists have developed new high-throughput approaches to the characterization of large numbers of yeast genes. In aggregate, these studies make yeast one of the most well-characterized eukaryotic organisms known.
Bacteria Harbor Geometric “Organelles”
Amber Dance | Dec 1, 2018 | 10+ min read
Microbes, traditionally thought to lack organelles, get a metabolic boost from geometric compartments that act as cauldrons for chemical reactions. Bioengineers are eager to harness the compartments for their own purposes.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo
Top 10 Innovations 2016
The Scientist | Dec 1, 2016 | 10+ min read
This year’s list of winners celebrates both large leaps and small (but important) steps in life science technology.
A New Model of Yeast Aging
Hannah Waters | Nov 23, 2011 | 4 min read
New findings challenge long-held views about the mechanism yeast cells use to live forever.

Run a Search

ADVERTISEMENT