ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag dna methylation disease medicine neuroscience ecology

Haydeh Payami is wearing a purple dress and an orange and pink scarf and standing in front of a whiteboard.
A Microbial Link to Parkinson’s Disease
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 6 min read
Haydeh Payami helped uncover the genetic basis of Parkinson’s disease. Now, she hopes to find new ways to treat the disease by studying the gut microbiome.
early-life stress, histone, chromatin, epigenetics, epigenetic modification, methylation, DNA, protein, stress, adversity, mice, genetics, genomics
Early-Life Stress Exerts Long-Lasting Effects Via Epigenome
Asher Jones | Mar 18, 2021 | 5 min read
In mice, epigenetic marks made on histones during infancy influence depression-like behavior during adulthood. A drug that reverses the genomic tags appears to undo the damage.
Methylation Maestro
Anna Azvolinsky | Jan 1, 2017 | 9 min read
After initially discovering that DNA methylation represses transcription, Howard Cedar continues to explore how the epigenetic mark regulates gene expression.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Methylation: Gene Expression at the Right Place and Right Time
Nadia Halim | Dec 5, 1999 | 7 min read
Courtesy of Richard Roberts, New England BiolabsModel methylation reaction: Cytosine nucleotide (red) is flipped out of the DNA double helix by a methyltransferase (white), so it can be methylated. The end product after the methyl group has been transferred to the DNA is pictured in green. A tenuous link between DNA methylation and development has existed for several years. Now findings substantiate the connection. Researchers have found the first human diseases caused by defects in the DNA meth
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Initiative Addresses Racial Disparities in Neuroscience
Amanda Heidt | Dec 1, 2020 | 4 min read
The African Ancestry Neuroscience Research Initiative plans to boost inclusion in genomic studies and support a more diverse generation of neuroscientists.
The Scientist Staff | Mar 28, 2024
Exercise Alters Epigenetics
Hannah Waters | Mar 6, 2012 | 3 min read
Exercise causes short-term changes in DNA methylation and gene expression in muscle tissue that may have implications for type 2 diabetes.
Can Viruses in the Genome Cause Disease?
Katarina Zimmer | Jan 1, 2019 | 10+ min read
Clinical trials that target human endogenous retroviruses to treat multiple sclerosis, ALS, and other ailments are underway, but many questions remain about how these sequences may disrupt our biology.

Run a Search

ADVERTISEMENT