ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag nih funding cell molecular biology culture

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
A person moving the hands of a vintage clock backwards.
Synthetic Circuits Reveal the Key to Rewinding the Cellular Clock
Charlene Lancaster, PhD | Mar 12, 2024 | 4 min read
Using a circuit-based system, scientists determined the ideal transcription factor levels to promote the successful reprogramming of fibroblasts into induced pluripotent stem cells.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
NIH Lifts Stem Cell Funding Ban, Issues Guidelines
Kate Devine | Sep 17, 2000 | 3 min read
Ever since the isolation and culturing of human pluripotent stem cells in 1998, the debate has intensified regarding legal, ethical, and social ramifications associated with research use of these cells that are capable of developing into many different specialized tissues.1, 2 In order for the National Institutes of Health to clarify its position on research with these cells, in January 1999, it placed a moratorium on use of human pluripotent stem cells derived from embryos and fetal tissue in f
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.
Image showing monoclonal antibody treatment
The Resilience of Monoclonal Antibodies and their Makers
Laura Tran, PhD | Mar 15, 2024 | 10+ min read
The road to developing monoclonal antibodies for effectively targeting cancer was paved with tenacity, passion, and strokes of luck.

Run a Search

ADVERTISEMENT