ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag alternative splicing ecology cell molecular biology microbiology

Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
Alternative Splicing Goes Mainstream
Sam Jaffe | Dec 14, 2003 | 10 min read
In eukaryotic genetics, the one-gene/one-protein concept has, for the most part, breathed its last. Researchers have rallied behind mechanisms such as alternative splicing, which may allow a lowly 30,000-gene genome to produce the dizzying variety of proteins that some believe is necessary to produce beings as complex as humans. Alternative splicing--the post-transcriptional editing process that can result in various mRNAs--was previously seen as an interesting but relatively uncommon sidesh
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Top 7 in Molecular Biology
Tia Ghose | Nov 1, 2011 | 3 min read
A snapshot of the most highly ranked articles in molecular biology and related areas, from Faculty of 1000
Epithelial cells and fungal spores are marked with fluorescent dyes. Cells have an irregular shape and are shown in green and blue colors. Spores are spherical in shape and are labeled green if they are surrounded by p11 protein. A protein in mature phagosomes is labeled violet.
Fungal Spores Hijack a Host Protein to Escape Death
Mariella Bodemeier Loayza Careaga, PhD | Jun 20, 2023 | 3 min read
Uncovering the components used by Aspergillus fumigatus to avoid intracellular destruction broadens our understanding of the mold’s pathogenesis. 
Illustration of newly discovered mechanism allowing kinesin to “walk” down a microtubule. A green kinesin molecule with an attached yellow fluorophore is shown passing through a blue laser as it rotates step by step along a red and purple microtubule, fueled by blue ATP molecules that are hydrolyzed into orange ADP and phosphate groups.
High-Resolution Microscope Watches Proteins Strut Their Stuff
Holly Barker, PhD | Mar 31, 2023 | 3 min read
Modification on a high-resolution fluorescent microscopy technique allow researchers to track the precise movements of motor proteins. 
A twisted and folded illustration of single-stranded RNA in front of a blue background.
Deficient RNA Editing Implicated in Inflammatory Disease 
Alejandra Manjarrez, PhD | Aug 5, 2022 | 3 min read
Genetic variants that reduce the editing levels of double-stranded RNA are associated with autoimmune and immune-mediated conditions, a study finds.
Opinion: Constrain Speculation to Protect the Integrity of Science
Mike Klymkowsky | Jun 18, 2018 | 4 min read
What we can know about biology before the last universal common ancestor is limited—and we should be circumspect in filling in the gaps.
Bioremediation: Cleaning Up With Biology And Technology
Angela Martello | Jan 6, 1991 | 7 min read
As the necessity of cleaning up the environment moves to the forefront of the public's consciousness, researchers in increasing numbers have been enlisting some of the earth's tiniest creatures to help clean up highly polluted sites and reclaim soils and groundwater systems. Stimulated by advances in microbiology and biotechnology, the booming multidisciplinary field of environmental biotechnology focuses on the use of microorganisms to treat or degrade hazardous waste, encompassing the techniq
A scanning electron micrograph of a coculture of E. coli and Acinetobacter baylyi. Nanotubes can be seen extending from the E. coli.
What’s the Deal with Bacterial Nanotubes?
Sruthi S. Balakrishnan | Jun 1, 2021 | 10+ min read
Several labs have reported the formation of bacterial nanotubes under different, often contrasting conditions. What are these structures and why are they so hard to reproduce?

Run a Search

ADVERTISEMENT