ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag retraction watch microbiology neuroscience developmental biology

A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
Death Watch II: Caspases and Apoptosis
Jorge Cortese | Jun 24, 2001 | 10 min read
Caspase Related Reagents Courtesy of Bingren Hu, Queen's Medical Center, Hawaii. Provided by Cell Signaling TechnologyConfocal micrograph of double immunostaining for cleaved caspase-3 (green) and propidium iodide (red) in newborn rat brain tissue. This section shows control and transient cerebral ischemia. Editor's Note: This is the second article in our two-part series on cell death. The first part: J. Cortese, "Death watch I: Cytotoxicity detection," The Scientist, 15[5]:26, March 5, 2001.
Stem-Cell Scientist Dies
Tracy Vence | Aug 4, 2014 | 2 min read
Yoshiki Sasai, a prominent organogenesis researcher who was a coauthor on two retracted stem cell studies, has died of apparent suicide at 52, officials say.
Top Ten Innovations 2011
The Scientist | Jan 1, 2012 | 10+ min read
Our list of the best and brightest products that 2011 had to offer the life scientist
Brains in Action
The Scientist | Feb 1, 2014 | 10+ min read
Neuroscientists are automating neural imaging and recording, allowing them to monitor increasingly large swaths of the brain in living, behaving animals.
 
STAP Drama Continues
Jef Akst | Mar 24, 2014 | 1 min read
Nearly two months after researchers published papers showing that they could induce pluripotency with an external stressor, the work’s validity is still being challenged.
How Cells Find Their Way
Laura Defrancesco | Sep 2, 2001 | 5 min read
Organisms need to sense their environment. By sensing, they can develop, heal wounds, protect against invaders, and create blood vessels. Chemotaxis, or directional sensing, allows cells to detect chemicals with exquisite sensitivity. Some chemotactic cells can sense chemical gradients that differ by only a few percent from a cell's front to its back. Although discovery of the molecule types involved in chemotaxis, as with other kinds of cell signaling events, has mounted, the details of how thi
A Paradigm Shift in Stem Cell Research?
Ricki Lewis | Mar 5, 2000 | 9 min read
Photo: E.D. Laywell, UT MemphisMultipotent clones of cells derived from the adult human brain With the promises and challenges of stem cell research in the headlines, visions of artificial livers dance in the public's eye. Bioethicists, politicians, and citizens alike continue to debate whether public funds should be used to obtain cells from human embryos and fetuses. On the scientific front, however, the implications of stem cell research are even more profound than offering replacement parts.
Notebook
Eugene Russo | Dec 5, 1999 | 7 min read
Contents Pivotal pump Leptin limbo Clue to obesity Biotech Web site Helping hand Mapping malaria Notebook Pictured above are pigmented bacterial colonies of Deinococcus radiodurans, the most radiation-resistant organism currently known. DEINO-MITE CLEANUP In 1956, investigators discovered a potentially invaluable cleanup tool in an unlikely place. A hardy bacterium called Deinococcus radiodurans unexpectedly thrived in samples of canned meat thought to be sterilized by gamma radiation. The b
Top 10 Innovations 2012
The Scientist | Dec 1, 2012 | 10+ min read
The Scientist’s 5th installment of its annual competition attracted submissions from across the life science spectrum. Here are the best and brightest products of the year.

Run a Search

ADVERTISEMENT