ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag bacterial toxin evolution cell molecular biology culture

A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Postmodern Culture: Maximizing Cell Culture Output At Every Level
Grant Meisenholder | Jul 4, 1999 | 10 min read
Date: July 5, 1999Products for High-Volume Tissue Culture The Automation Partnership's CELLMATETM Automated Cell Culture Processing System Mammalian cell culture has finally come into its own as a way to produce cells, proteins, or sub-cellular components in large scale. Recent advances in cell culture systems are allowing scientists to better circumvent problems associated with bacterial systems such as incomplete protein expression, toxin contamination, and incompatibility. Today's wide arra
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Week in Review: February 23–27
Tracy Vence | Feb 27, 2015 | 3 min read
Stem cells in culture; engineered cancer biomarkers; small molecule improves stem cell homing; reproducible bacterial evolution; how human adaptive immunity develops
a microscope image of a rotifer
Bacterial Enzyme Keeps Rotifers’ Transposable Elements in Check
Christie Wilcox, PhD | Mar 3, 2022 | 5 min read
Jumping genes in bdelloid rotifers are tamped down by DNA methylation performed by an enzyme pilfered from bacteria roughly 60 million years ago, a study finds.
The structure of a biological cell (macro)
The Long and Winding Road to Eukaryotic Cells
Amanda Heidt | Oct 17, 2022 | 10+ min read
Despite recent advances in the study of eukaryogenesis, much remains unresolved about the origin and evolution of the most complex domain of life.
A Y-shaped pink, blue, and light green antibody is in focus on a background of blurred pink and purple color, with other antibodies out of focus in the background.
Phage Display: Finding the One in a Million
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
A combinatorial approach enabled high-throughput screening of protein libraries for desired target binding.
Monitoring Mutations with Microfluidics
Ruth Williams | Mar 15, 2018 | 3 min read
A device dubbed the “mother machine” enables real-time observation of mutagenesis in single bacterial cells.  

Run a Search

ADVERTISEMENT