ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag sanger institute evolution

a microscope image of a rotifer
Bacterial Enzyme Keeps Rotifers’ Transposable Elements in Check
Christie Wilcox, PhD | Mar 3, 2022 | 5 min read
Jumping genes in bdelloid rotifers are tamped down by DNA methylation performed by an enzyme pilfered from bacteria roughly 60 million years ago, a study finds.
Layered visual representation of multiomics
Integrate and Innovate with NGS and Multiomics
The Scientist and Illumina | May 4, 2023 | 6 min read
Researchers across disciplines combine layers of discovery obtained with accessible NGS-based multiomics approaches.
Illustration showing a puzzle piece of DNA being removed
Large Scientific Collaborations Aim to Complete Human Genome
Brianna Chrisman and Jordan Eizenga | Sep 1, 2022 | 10+ min read
Thirty years out from the start of the Human Genome Project, researchers have finally finished sequencing the full 3 billion bases of a person’s genetic code. But even a complete reference genome has its shortcomings.
The Human Genome
Arielle Emmett | Jul 23, 2000 | 10+ min read
Life sciences took center stage virtually around the world June 26. President Bill Clinton, flanked on the left by Celera Genomics Group president J. Craig Venter and on the right by National Human Genome Research Institute director Francis S. Collins, announced the completion of "the first survey of the entire human genome."
Making DNA Data Storage a Reality
Catherine Offord | Oct 1, 2017 | 10+ min read
A few kilograms of DNA could theoretically store all of humanity’s data, but there are practical challenges to overcome.
Automated Colony Pickers Evolve
Helen Dell(hdell@the-scientist.com) | Jul 3, 2005 | 6 min read
Everyone knows that the first genome sequencing projects took years of work and represent the combined product of tens of thousands of individual fragments.
The Biggest Stories in Bioscience 2005
Ishani Ganguli | Dec 4, 2005 | 8 min read
Life scientists have been challenged more than ever this year not just to critically analyze data, but to better interpret those data for an increasingly critical public.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo

Run a Search

ADVERTISEMENT