ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag bacteriophage disease medicine

bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Building Nanoscale Structures with DNA
Arun Richard Chandrasekaran | Jul 16, 2017 | 10+ min read
The versatility of geometric shapes made from the nucleic acid are proving useful in a wide variety of fields from molecular computation to biology to medicine.
Live and In Color
Sarah Webb, Knowable Magazine | Apr 1, 2012 | 7 min read
How to track RNA in living cells
How to Create a Successful Fish Tale?
A. J. S. Rayl | Aug 19, 2001 | 10+ min read
More than 80 percent of the planet's living organisms exist only in aquatic ecosystems. Some may harbor secrets to human origins, and clues, treatments--perhaps even cures--for human disease. Some are critical bioindicators that portend the health of the biosphere. Yet, overall, scientists know little about the biochemical processes of these life forms. The vast, rich knowledge within the oceans and freshwater systems on Earth remains virtually untapped, because in the world of biological resear
Unmasking Secret Identities
Kate Yandell | Feb 1, 2014 | 9 min read
A tour of techniques for measuring DNA hydroxymethylation
Cloning Without Restriction
Gail Dutton(gdutton@the-scientist.com) | Sep 11, 2005 | 6 min read
Cloning DNA fragments using restriction enzymes is like flying from Seattle to New York via Phoenix.
Jumping Genes A Buyers' Guide
Hillary Sussman | Jun 15, 2003 | 6 min read
Courtesy of Ivan Rayment  CAUGHT IN MID HOP: Structure of the Tn5 transposase/DNA complex No one believed Barbara McClintock in 1951 when she first described DNA that "jumped" from site to site within maize chromosomes, altering the expression of genes near the sites of integration. In due course, these transposable elements, or transposons, were found to be ubiquitous in nature, and 30 years later McClintock won the Nobel Prize. Today transposons have gone from molecular oddity to molec

Run a Search

ADVERTISEMENT