ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag brewing genetics genomics culture ecology

bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Yeast Made to Harvest Light Hint at Evolution’s Past
Kamal Nahas, PhD | Feb 21, 2024 | 6 min read
Scientists transferred light-harvesting proteins into yeast for the first time, shining a light on the past lives of eukaryotic cells.
A fruit bat in the hands of a researcher
How an Early Warning Radar Could Prevent Future Pandemics
Amos Zeeberg, Undark | Feb 27, 2023 | 8 min read
Metagenomic sequencing can help detect unknown pathogens, but its widespread use faces challenges.
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c
A Test Bed for Budding Technologies
Aileen Constans | Jul 4, 2004 | 6 min read
DELETION BY DESIGN:Courtesy of Guci GiaeverThe deletion cassette module used to delete each yeast gene contains two 74-basepair tags upstream and downstream (UPTAG and DNTAG) of the KanMX gene, which confers resistance to the drug geneticin. UPTAG and DNTAG contain 18 basepairs of genomic sequence to flank the yeast's open reading frame, and U1 and U2, or D1 and D2 PCR primers for amplifying a unique 20-basepair TAG region-the so-called molecular barcode. A second round of PCR adds 45 base-pairs
An Ocean of Viruses
Joshua S. Weitz and Steven W. Wilhelm | Jul 1, 2013 | 10+ min read
Viruses abound in the world’s oceans, yet researchers are only beginning to understand how they affect life and chemistry from the water’s surface to the sea floor.
Yeast: An Attractive, Yet Simple Model
Gregory Smutzer | Sep 16, 2001 | 9 min read
Yeast possesses many characteristics that make it especially useful as a model system in the laboratory, including an entirely sequenced genome. Recently, a number of researchers published studies detailing the transition from genome sequencing to functional genomics. Notably, these scientists have developed new high-throughput approaches to the characterization of large numbers of yeast genes. In aggregate, these studies make yeast one of the most well-characterized eukaryotic organisms known.
Illuminating Behaviors
Douglas Steinberg | Jun 1, 2003 | 6 min read
Courtesy of Genevieve Anderson If not for Nobel laureates Thomas Hunt Morgan, Eric R. Kandel, and Sydney Brenner, the notion of a general behavioral model might seem odd. Behaviors, after all, are determined by an animal's evolutionary history and ecological niche. They are often idiosyncratic, shared in detail only by closely related species. But, thanks to Morgan's research in the early 20th century, and Kandel's and Brenner's work over the past 35 years, the fly Drosophila melanogaster, t
How Interconnected Is Life in the Ocean?
Catherine Offord | Nov 1, 2019 | 10+ min read
To help create better conservation and management plans, researchers are measuring how marine organisms move between habitats and populations.
Updated Sept 1
coronavirus pandemic news articles covid-19 sars-cov-2 virology research science
Follow the Coronavirus Outbreak
The Scientist | Feb 20, 2020 | 10+ min read
Saliva tests screen staff and students at University of Illinois; Study ranks species most susceptible to SARS-CoV-2 infection; COVID-19 clinical trials test drugs that inhibit kinin system

Run a Search

ADVERTISEMENT