ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag fashion genetics genomics

Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c
Whole-Genome SNP Genotyping
Marilee Ogren | Jun 1, 2003 | 8 min read
Clockwise from top left: images courtesy of Affymetrix, Illumina, Sequenom and Illumina Take any two individuals, sequence and compare their genomic DNA, and you'll find that the vast majority (about 99.9%) of the sequences are identical. In the remaining 0.1% lie differences in disease susceptibility, environmental response, and drug metabolism. Researchers are understandably keen to dissect these variations, most of which take the form of single-nucleotide polymorphisms (SNPs). A SNP (pron
Bioinformatics, Genomics, and Proteomics
Christopher Smith | Nov 26, 2000 | 10+ min read
Data Mining Software for Genomics, Proteomics and Expression Data (Part 1) Data Mining Software for Genomics, Proteomics and Expression Data (Part 2) High-throughput (HT) sequencing, microarray screening and protein expression profiling technologies drive discovery efforts in today's genomics and proteomics laboratories. These tools allow researchers to generate massive amounts of data, at a rate orders of magnitude greater than scientists ever anticipated. Initiatives to sequence entire genom
Privatizing the Human Genome?
Paul Smaglik | Jun 7, 1998 | 10 min read
Principals behind joint-venture proposal and public effort seek to define relationships A private effort to sequence the human genome four years ahead of the Human Genome Project's 2005 goal could either compete directly with the federal project or meld seamlessly with it. Before any relationship between the two efforts becomes formalized, scientists and federal officials involved with the Human Genome Project must determine whether the private approach will work, who will own the data, how qu
A Personal View of Genomics
Ricki Lewis | Nov 25, 2001 | 6 min read
It wasn't easy getting to the 4th International Meeting on Single Nucleotide Polymorphisms and Complex Genome Analysis held Oct. 10-15 at the Wenner-Gren Foundation in Stockholm. A week earlier, as flight cancellations continued in the wake of the Sept. 11 terrorist attacks, SwissAir had declared bankruptcy and an SAS jet had crashed in Milan, further disrupting schedules. So it was little surprise that several speakers had to phone in their talks. But not J. Craig Venter, president and chief sc
Prospecting for Gold in Genome Gulch
Amy Adams | Apr 14, 2002 | 9 min read
The human genome is much like the American West of the 1850s: Everyone wants a piece of the pie. Similar to gold prospectors of 150 years ago, biotech and pharmaceutical companies, and even universities, are frantically searching for the nuggets of gold that will help them find the mother lode—a gene whose function is sufficiently marketable to make all of the preliminary research worthwhile. Companies that do strike gold get to introduce new classes of drugs to the market. Others hope to
Photo of Junyue Cao
Junyue Cao Applies Novel Approaches to Aging and Disease
Lisa Winter | Mar 14, 2022 | 3 min read
The Rockefeller University geneticist is tracing the full lifespan of individual cells to better understand how and why humans age.
Beyond Sanger: Toward the $1,000 Genome
Aileen Constans | Jun 29, 2003 | 10 min read
Courtesy of Solexa Total Genotyping Without a doubt, the quarter-century-old Sanger sequencing method performed like a champ during the Human Genome Project. But with the capacity to read only a few hundred bases per reaction, it is far too slow and expensive for routine use in clinical settings. Reaping the rewards of the genomics era will clearly require faster and cheaper alternatives. Some companies estimate that within the next five years, technical advances could drop the cost of seque
2020 Top 10 Innovations
The Scientist | Dec 1, 2020 | 10+ min read
From a rapid molecular test for COVID-19 to tools that can characterize the antibodies produced in the plasma of patients recovering from the disease, this year’s winners reflect the research community’s shared focus in a challenging year.

Run a Search

ADVERTISEMENT