ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag genome architecture microbiology ecology

bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
An illustration of green bacteria floating above neutral-colored intestinal villi
The Inside Guide: The Gut Microbiome’s Role in Host Evolution
Catherine Offord | Jul 1, 2021 | 10+ min read
Bacteria that live in the digestive tracts of animals may influence the adaptive trajectories of their hosts.
Bacteria Harbor Geometric “Organelles”
Amber Dance | Dec 1, 2018 | 10+ min read
Microbes, traditionally thought to lack organelles, get a metabolic boost from geometric compartments that act as cauldrons for chemical reactions. Bioengineers are eager to harness the compartments for their own purposes.
Pufferfish Genomes Probe Human Genes
Ricki Lewis | Mar 17, 2002 | 7 min read
It may be humbling to think that humans have much in common with pufferfish, but at the genome level, the two are practically kissing cousins. "In terms of gene complement, we are at least 90% similar—probably higher. There are big differences in gene expression levels and alternate transcripts, but if you're talking about diversity, number and types of proteins, then it's pretty difficult to tell us apart," says Greg Elgar, group leader of the Fugu genome project at the Medical Research C
When Stop Means Go
Ruth Williams | May 22, 2014 | 3 min read
A survey of trillions of base pairs of microbial DNA reveals a considerable degree of stop codon reassignment.
An Ocean of Viruses
Joshua S. Weitz and Steven W. Wilhelm | Jul 1, 2013 | 10+ min read
Viruses abound in the world’s oceans, yet researchers are only beginning to understand how they affect life and chemistry from the water’s surface to the sea floor.
The Scientist Staff | Mar 28, 2024
DNA Software Takes The Drudgery Out Of Molecular Biology
Ricki Lewis | Sep 15, 1991 | 8 min read
Author: RICKI LEWIS, p.23 It is expected to take some 15 years to determine the sequence of the 3 billion base pairs that make up the human genome--roughly 550,000 base pairs per day. An analytical task of this magnitude would have been unthinkable just a few years ago, but today's rapidly advancing computer technology has made the international effort to sequence the human genome possible. C.B.S. Scientific Co. Inc. P.O. Box 856 Del Mar, Calif. 92014 Phone: (619) 755-4959 Fax: (619) 755-
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c
60 Members Elected to NAS
Barry Palevitz | Jun 25, 2000 | 6 min read
Editor's Note: On May 2, the National Academy of Sciences announced the election of 60 new members and 15 foreign associates from nine countries in recognition of their distinguished and continuing achievements in original research. Nearly half of the new members are life scientists. In this article, The Scientist presents photographs of some of the new members and comments from a few of them on their careers and on past and current research. A full directory of NAS members can be found online a

Run a Search

ADVERTISEMENT