ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag koala retrovirus genetics genomics microbiology

Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
An illustration of green bacteria floating above neutral-colored intestinal villi
The Inside Guide: The Gut Microbiome’s Role in Host Evolution
Catherine Offord | Jul 1, 2021 | 10+ min read
Bacteria that live in the digestive tracts of animals may influence the adaptive trajectories of their hosts.
Making Things Grow: Insect Cells, Stem Cells, and Primary Cell Lines All Pose Challenges for Cell Culturists
Laura Defrancesco | Jun 21, 1998 | 5 min read
Date: June 22, 1998 Insect Cell Culture Media, Suppliers of Primary Cell Culture Media Advantages for Protein Expression Studies Since the mid-1950s cultures of insects--cockroaches, fruit flies, and leafhoppers, to name a few--have been the object of quiet study by physiologists and cell biologists. But along came genetic engineering and suddenly insect cultures have been put in the spotlight since they provide advantages over both bacterial and mammalian systems for recombinant protein prod
Research Notes
Eugene Russo | Jun 25, 2000 | 5 min read
Putting Polio to Good Use Add polio to a host of other viral and bacterial foes that, in modified forms, could prove therapeutically beneficial. Although Russian scientists attempted to use polio to treat cancer in the 1960s--unpublished experiments about which little is known--a recent brain cancer study in mice is the first modern-day attempt to harness the power of the virus (M. Gromeier et al., "Intergeneric poliovirus recombinants for the treatment of malignant glioma," Proceedings of the
Jumping Genes A Buyers' Guide
Hillary Sussman | Jun 15, 2003 | 6 min read
Courtesy of Ivan Rayment  CAUGHT IN MID HOP: Structure of the Tn5 transposase/DNA complex No one believed Barbara McClintock in 1951 when she first described DNA that "jumped" from site to site within maize chromosomes, altering the expression of genes near the sites of integration. In due course, these transposable elements, or transposons, were found to be ubiquitous in nature, and 30 years later McClintock won the Nobel Prize. Today transposons have gone from molecular oddity to molec

Run a Search

ADVERTISEMENT