ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag atmospheric microbes cell molecular biology developmental biology genetics genomics

Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
A C-fern (Ceratopteris richardii) growing in a pot
Genome Spotlight: C-fern (Ceratopteris richardii)
Christie Wilcox, PhD | Sep 22, 2022 | 5 min read
Sequences for the model organism and two of its kin reveal how these plants got their oversized genomes.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Recent Trials for Fragile X Syndrome Offer Hope
Randi Hagerman | Sep 1, 2019 | 10+ min read
Despite a solid understanding of the biological basis of fragile X syndrome, researchers have struggled to develop effective treatments.
A Summing Up, and a Look Ahead, in Biology
Patrick Wigge | Jun 11, 2000 | 5 min read
Illustration: A. Canamucio Biology today, though uncovering more and more knowledge at an amazingly rapid rate, is more specialized, fragmented, and incomprehensible to the layperson than ever. Part of this is inevitable, due to the rapid expansion of knowledge brought about by the great advances of molecular techniques. However, disciplinary boundaries are also part of the problem. Could we not try to overcome such obstacles and integrate some of the many strands of knowledge, to see what we mi
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo
Biotechnology Reenergized
Aristides Patrinos(ari.patrinos@science.doe.gov) | Mar 13, 2005 | 6 min read
The completion of the Human Genome Project (HGP) symbolizes the entry of biology into the "big science" arena.

Run a Search

ADVERTISEMENT