ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag nanoscale imaging genetics genomics immunology

Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Bugs as Drugs to Boost Cancer Therapy
Danielle Gerhard, PhD | Jan 18, 2024 | 7 min read
Bioengineered bacteria sneak past solid tumor defenses to guide CAR T cells’ attacks.
Top 10 Innovations 2013
The Scientist | Dec 1, 2013 | 10+ min read
The Scientist’s annual competition uncovered a bonanza of interesting technologies that made their way onto the market and into labs this year.
Building Nanoscale Structures with DNA
Arun Richard Chandrasekaran | Jul 16, 2017 | 10+ min read
The versatility of geometric shapes made from the nucleic acid are proving useful in a wide variety of fields from molecular computation to biology to medicine.
Top 7 in Immunology
Edyta Zielinska | Aug 2, 2011 | 3 min read
A snapshot of the most highly ranked articles in microbiology and related areas, from Faculty of 1000
obituary, obituaries, roundup, end of the year, COVID-19, SARS-CoV-2, pandemic, coronavirus, immunology, genetics & genomics, cell & molecular biology, HIV
Those We Lost in 2020
Amanda Heidt | Dec 18, 2020 | 7 min read
The scientific community bid farewell to researchers who furthered the fields of molecular biology, virology, sleep science, and immunology, among others.
The Scientist Staff | Mar 28, 2024
Eat Yourself to Live: Autophagy’s Role in Health and Disease
Vikramjit Lahiri and Daniel J. Klionsky | Mar 1, 2018 | 10+ min read
New details of the molecular process by which our cells consume themselves point to therapeutic potential.
Birth of the Skin Microbiome
Anna Azvolinsky | Nov 17, 2015 | 3 min read
The immune system tolerates the colonization of commensal bacteria on the skin with the aid of regulatory T cells during the first few weeks of life, a mouse study shows.
Beyond Sanger: Toward the $1,000 Genome
Aileen Constans | Jun 29, 2003 | 10 min read
Courtesy of Solexa Total Genotyping Without a doubt, the quarter-century-old Sanger sequencing method performed like a champ during the Human Genome Project. But with the capacity to read only a few hundred bases per reaction, it is far too slow and expensive for routine use in clinical settings. Reaping the rewards of the genomics era will clearly require faster and cheaper alternatives. Some companies estimate that within the next five years, technical advances could drop the cost of seque

Run a Search

ADVERTISEMENT