ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag basic research neuroscience ecology

A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
Neurons (green) fire differently depending on whether the astrocytes (red) they are grown with are cultivated from people with or without fragile X.
Astrocytes Fuel Erratic Firing in Fragile X Neurons
Lauren Schenkman, Spectrum | May 30, 2023 | 4 min read
This new understanding could one day lead to targeted treatments. 
Photographs of animals
Numerosity Around the Animal Kingdom
Catherine Offord | Oct 1, 2021 | 2 min read
Research in recent decades has explored how animals other than humans perceive different numbers of objects
Migratory Eels Use Magnetoreception
Kerry Grens | Apr 14, 2017 | 2 min read
In laboratory experiments that simulated oceanic conditions, the fish responded to magnetic fields, a sensory input that may aid migration.
Capsule Reviews
Bob Grant | May 1, 2014 | 3 min read
Madness and Memory, Promoting the Planck Club, The Carnivore Way, and The Tale of the Dueling Neurosurgeons
Scanning electron micrograph (SEM) of the unicellular yeast Saccharomyces cerevisiae, known as Baker's or Brewer's yeast.
Yeast Models Provide New Insights into Neurodegenerative Diseases
Mahlon Collins | Oct 1, 2021 | 10+ min read
The single-celled fungus allows researchers to study Alzheimer’s, Parkinson’s, ALS and other brain diseases with unparalleled speed and scale.
Microscopy image showing patches of magenta and green
Three Autism-Linked Genes Converge on Tweaks to Cells’ Timing
Angie Voyles Askham, Spectrum | Feb 3, 2022 | 3 min read
The genes are involved in pacing the development of inhibitory and excitatory neurons. An imbalance in these two types of signaling is thought to play a role in autism.
SYNGAP1 helps neurons eliminate old synapses and form new ones after a novel experience (left and center left)—a process weakened in mice missing a copy of the gene (center right and right).
Autism-Linked Gene SYNGAP1 Molds Synaptic Plasticity, Learning
Angie Voyles Askham, Spectrum | Oct 26, 2021 | 4 min read
The finding may help to explain why people with SYNGAP1 mutations tend to have learning difficulties and a high tolerance for pain.
How Trees Fare in Big Hurricanes
Amber Dance | Feb 1, 2019 | 10+ min read
Forests are resilient, but researchers wonder if climate change will outpace their adaptations.

Run a Search

ADVERTISEMENT