ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag gene therapy developmental biology cell molecular biology disease medicine

Glowing red DNA on bluish background
Redesigning Medicine Using Synthetic Biology
Alison Halliday, PhD, Technology Networks | Jun 21, 2023 | 5 min read
Drawing inspiration from nature, synthetic biology offers exciting opportunities to transform the future of medicine.
Developmental Biology
The Scientist Staff | Nov 13, 1994 | 2 min read
K.G. Peters, D. Ornitz, S. Werner, L. Williams, "Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis," Developmental Biology, 155:423-30, 1993. Kevin G. Peters (Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, N.C.): "Members of the fibroblast growth factor (FGF) family are powerful regulators of cell growth and differentiation that stimulate cells by activating spe
Developmental Biology
The Scientist Staff | Nov 13, 1994 | 2 min read
K.G. Peters, D. Ornitz, S. Werner, L. Williams, "Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis," Developmental Biology, 155:423-30, 1993. Kevin G. Peters (Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, N.C.): "Members of the fibroblast growth factor (FGF) family are powerful regulators of cell growth and differentiation that stimulate cells by activating spe
Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Developmental Biology
The Scientist Staff | Feb 1, 1999 | 6 min read
Edited by: Paul Smaglik P. Carmeliet, V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau, A. Nagy, "Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele," Nature, 380:435-9, 1996. (Cited in more than 235 papers since publication) Comments by Andras Nagy, senior staff scientist, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, To
DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
Top 7 in developmental biology
Bob Grant | Dec 17, 2010 | 3 min read
A snapshot of the most highly ranked articles in developmental biology, from Faculty of 1000
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
Top 7 cell biology papers
Jef Akst | Jul 12, 2010 | 3 min read
#1 Gene for autoimmunity Rare genetic variants in the protein sialic acid acetylesterase (SASE) are linked to common human autoimmune diseases, including type 1 diabetes, arthritis, and Crohn's disease. In mice, defects in the protein have been linked to problems in B-cell signaling and the development of auto-antibodies. I. Surolia, et al., "Functionally defective germline variants of sialic acid acetylesterase in autoimmunity," Nature, 466:243-7. Epub 2010 Jun 16. linkurl:Eval;http://f1000b

Run a Search

ADVERTISEMENT