ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag tools microbiology

bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Haydeh Payami is wearing a purple dress and an orange and pink scarf and standing in front of a whiteboard.
A Microbial Link to Parkinson’s Disease
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 6 min read
Haydeh Payami helped uncover the genetic basis of Parkinson’s disease. Now, she hopes to find new ways to treat the disease by studying the gut microbiome.
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Illustration of newly discovered mechanism allowing kinesin to “walk” down a microtubule. A green kinesin molecule with an attached yellow fluorophore is shown passing through a blue laser as it rotates step by step along a red and purple microtubule, fueled by blue ATP molecules that are hydrolyzed into orange ADP and phosphate groups.
High-Resolution Microscope Watches Proteins Strut Their Stuff
Holly Barker, PhD | Mar 31, 2023 | 3 min read
Modification on a high-resolution fluorescent microscopy technique allow researchers to track the precise movements of motor proteins. 
a human neuron illuminated in bright green on a black background.
Mitochondrial Metabolism Dictates Neurons’ Growth Rate
Katherine Irving | Jan 30, 2023 | 4 min read
Altering the rate of respiration in mitochondria changes how fast neurons grow, making mouse neurons grow more like human ones and vice versa, a study finds.
Fish in a big blue aquarium
Microbes Responsible for Stealing Aquarium Medicine
Amanda Heidt | Feb 1, 2022 | 6 min read
Researchers discover that bacteria break down medicinal compounds for their nitrogen, solving a mystery that has vexed aquatic veterinarians for years.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
800x560-misherlock-0916
A New COVID-19 Spit Test Is as Easy as 1-2-3
Roni Dengler, PhD | Aug 16, 2021 | 4 min read
A device smaller than two stacked decks of cards can reliably detect and discriminate between SARS-CoV-2 variants in spit in less than an hour with results that glow.
Measuring Membrane Proteins with Mass-Sensitive Particle Tracking
The Scientist Creative Services Team in collaboration with Refeyn | May 26, 2021 | 2 min read
Researchers will discuss a new mass photometry method that characterizes molecules in their native state on supported lipid bilayers.
A scanning electron micrograph of a coculture of E. coli and Acinetobacter baylyi. Nanotubes can be seen extending from the E. coli.
What’s the Deal with Bacterial Nanotubes?
Sruthi S. Balakrishnan | Jun 1, 2021 | 10+ min read
Several labs have reported the formation of bacterial nanotubes under different, often contrasting conditions. What are these structures and why are they so hard to reproduce?

Run a Search

ADVERTISEMENT