ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag microscope ecology neuroscience cell molecular biology

Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
dna microscopy visualization RNA cDNA mRNA transcripts cell biology
New Technique Maps RNAs in Cells Without a Microscope
Kerry Grens | Jun 20, 2019 | 1 min read
DNA microscopy pinpoints the locations of transcripts by laying a grid of tags over the molecules and labeling each connection.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Confocal Microscopes Widen Cell Biology Career Horizons
Diana Morgan | Jul 22, 1990 | 7 min read
Innovative instruments, often jerry-built from parts of other devices, are making a wide array of new projects possible One look through something called a confocal microscope was all it took for William Sunderland to make a drastic change in his career plans. A math student with what appeared to be a bright future in computers, he peeked one day through the lens of a microscope invented in the lab where he worked. The dazzlingly detailed pictures of living cells convinced him to switch his ma
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
On the left is a normally developing mouse embryo, on the right is a slightly larger mouse embryo that also contains horse cells that glow green.
Chimera research opens new doors to understanding and treating disease
Hannah Thomasy, PhD, Drug Discovery News | Aug 9, 2023 | 10 min read
Animals with human cells could provide donor organs or help us understand neuropsychiatric disorders.
Illustration of newly discovered mechanism allowing kinesin to “walk” down a microtubule. A green kinesin molecule with an attached yellow fluorophore is shown passing through a blue laser as it rotates step by step along a red and purple microtubule, fueled by blue ATP molecules that are hydrolyzed into orange ADP and phosphate groups.
High-Resolution Microscope Watches Proteins Strut Their Stuff
Holly Barker, PhD | Mar 31, 2023 | 3 min read
Modification on a high-resolution fluorescent microscopy technique allow researchers to track the precise movements of motor proteins. 
This image depicts the fruit fly nerve cord connectome. It highlights 930 neurons, a subset of the full set of reconstructed neurons.
The Expansion of Volume Electron Microscopy
Danielle Gerhard, PhD | Sep 8, 2023 | 6 min read
A series of technological advancements for automation and parallel imaging made volume electron microscopy more user friendly while increasing throughput.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.

Run a Search

ADVERTISEMENT