ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag fluorescence microscopy neuroscience developmental biology microbiology

Illustration of newly discovered mechanism allowing kinesin to “walk” down a microtubule. A green kinesin molecule with an attached yellow fluorophore is shown passing through a blue laser as it rotates step by step along a red and purple microtubule, fueled by blue ATP molecules that are hydrolyzed into orange ADP and phosphate groups.
High-Resolution Microscope Watches Proteins Strut Their Stuff
Holly Barker, PhD | Mar 31, 2023 | 3 min read
Modification on a high-resolution fluorescent microscopy technique allow researchers to track the precise movements of motor proteins. 
Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
The mouse peripheral nervous system with nerve cells farther away from the camera represented in yellow and pink, while nerves closer to the camera are shown in blue tones.
A Glowing Mouse Map
Mariella Bodemeier Loayza Careaga, PhD | Feb 1, 2024 | 2 min read
A whole-body immunostaining method allowed researchers to achieve cellular resolution at the whole-organism level.
Charting a New Course Through the Injured Brain
Rashmi Shivni | Jan 15, 2024 | 4 min read
A state-of-the-art technique helps scientists map out tissue at the single cell level after a demyelinating brain injury.
Bugs as Drugs to Boost Cancer Therapy
Danielle Gerhard, PhD | Jan 18, 2024 | 7 min read
Bioengineered bacteria sneak past solid tumor defenses to guide CAR T cells’ attacks.
A scanning electron micrograph of a coculture of E. coli and Acinetobacter baylyi. Nanotubes can be seen extending from the E. coli.
What’s the Deal with Bacterial Nanotubes?
Sruthi S. Balakrishnan | Jun 1, 2021 | 10+ min read
Several labs have reported the formation of bacterial nanotubes under different, often contrasting conditions. What are these structures and why are they so hard to reproduce?
Microscopy image of a fluorescent green oligodendrocyte surrounded by astrocytes stained red with blue nuclei.
Searching for a Direct Route to Multiple Sclerosis Treatment
Deanna MacNeil, PhD | Jul 17, 2023 | 3 min read
Researchers created a new high-throughput tool to hunt for therapies that remyelinate the nervous system.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.

Run a Search

ADVERTISEMENT