Stem cells branch out

Differentiation of embryonic stem (ES) cells, which are originally totipotent, puts increasing restrictions on the final fates that a cell can achieve. This simple idea was upset last year when neural stem cells were shown to produce blood cells in irradiated adult mice. In the 2 June issue of Science, Clarke et al. show that neural stem cells injected into embryos can generate a wide variety of tissues including cells in the central nervous system, heart, liver, and intestine (Science 2000, 288

By | June 7, 2000

Differentiation of embryonic stem (ES) cells, which are originally totipotent, puts increasing restrictions on the final fates that a cell can achieve. This simple idea was upset last year when neural stem cells were shown to produce blood cells in irradiated adult mice. In the 2 June issue of Science, Clarke et al. show that neural stem cells injected into embryos can generate a wide variety of tissues including cells in the central nervous system, heart, liver, and intestine (Science 2000, 288:1660-1663). This raises the possibility of using similar stem cells for human therapy, in place of the ethically questionable use of human ES cells.

Popular Now

  1. Exercise Boosts Telomere Transcription
  2. Neurons Compete to Form Memories
  3. Classic Example of Symbiosis Revised
  4. The Genetic Components of Rare Diseases
RayBiotech