Gene, regulate thyself

The stochastic nature of every chemical event in the cell generates noise that can lead to large fluctuations in protein and mRNA levels. Autoregulatory negative feedback loops in gene circuits have been proposed, but never shown, to be one way of limiting this variation. With a simple experiment, in the 1 June Nature Becskei and Serrano demonstrate that negative feedback can decrease the inherent variability of gene expression more than threefold. They direct expression of a hybrid protein (gre

By | June 7, 2000

The stochastic nature of every chemical event in the cell generates noise that can lead to large fluctuations in protein and mRNA levels. Autoregulatory negative feedback loops in gene circuits have been proposed, but never shown, to be one way of limiting this variation. With a simple experiment, in the 1 June Nature Becskei and Serrano demonstrate that negative feedback can decrease the inherent variability of gene expression more than threefold. They direct expression of a hybrid protein (green fluorescent protein, GFP, plus the tetracycline repressor, TetR) from a TetR-regulated promoter. The stability of the resultant expression (as compared to expression from constructs that lack TetR control) may explain why about 40% of known transcription factors in Escherichia coli negatively regulate themselves.

Popular Now

  1. Publishers’ Legal Action Advances Against Sci-Hub
  2. How Microbes May Influence Our Behavior
  3. Metabolomics Data Under Scrutiny
    Daily News Metabolomics Data Under Scrutiny

    Out of 25,000 features originally detected by metabolic profiling of E. coli, fewer than 1,000 represent unique metabolites, a study finds.

  4. Sexual Touch Promotes Early Puberty
    Daily News Sexual Touch Promotes Early Puberty

    The brains and bodies of young female rats can be accelerated into puberty by the presence of an older male or by stimulation of the genitals.

AAAS