Breeding a better vector

DNA shuffling (also called molecular breeding) generates variation by random fragmentation of a cloned gene followed by reassembly of the fragments in a self-priming polymerase reaction. The result is a recombination of overlapping fragments that have different mutations or come from different, naturally occurring homologous genes. In the August Nature Genetics Soong et al apply this technique to a pool of six different murine leukemia virus envelope sequences to derive a new virus that can,

By | August 7, 2000

DNA shuffling (also called molecular breeding) generates variation by random fragmentation of a cloned gene followed by reassembly of the fragments in a self-priming polymerase reaction. The result is a recombination of overlapping fragments that have different mutations or come from different, naturally occurring homologous genes. In the August Nature Genetics Soong et al apply this technique to a pool of six different murine leukemia virus envelope sequences to derive a new virus that can, unlike its parents, infect Chinese Hamster Ovary (CHOK1) cells (Nat. Gen. 2000, 25:436-439). Similar selections on clinically relevant cell types may yield improved vectors for gene therapy.

Popular Now

  1. How Plants Evolved Different Ways to Make Caffeine
  2. Thomson Reuters Predicts Nobelists
    The Nutshell Thomson Reuters Predicts Nobelists

    According to citation statistics, researchers behind programmed cell death pathways and CRISPR/Cas9 are among those in line for Nobel Prizes this year.

  3. Monsanto Buys Rights to CRISPR
    The Nutshell Monsanto Buys Rights to CRISPR

    The US agribusiness secures a global, nonexclusive licensing agreement from the Broad Institute to use the gene-editing technology for agricultural applications.

  4. Reviewing Results-Free Manuscripts
    The Nutshell Reviewing Results-Free Manuscripts

    An open-access journal is trialing a peer-review process in which reviewers do not have access to the results or discussion sections of submitted papers.

RayBiotech