Breeding a better vector

DNA shuffling (also called molecular breeding) generates variation by random fragmentation of a cloned gene followed by reassembly of the fragments in a self-priming polymerase reaction. The result is a recombination of overlapping fragments that have different mutations or come from different, naturally occurring homologous genes.

By | August 7, 2000

DNA shuffling (also called molecular breeding) generates variation by random fragmentation of a cloned gene followed by reassembly of the fragments in a self-priming polymerase reaction. The result is a recombination of overlapping fragments that have different mutations or come from different, naturally occurring homologous genes. In the August Nature Genetics Soong et al apply this technique to a pool of six different murine leukemia virus envelope sequences to derive a new virus that can, unlike its parents, infect Chinese Hamster Ovary (CHOK1) cells (Nat. Gen. 2000, 25:436-439). Similar selections on clinically relevant cell types may yield improved vectors for gene therapy.

Popular Now

  1. Top 10 Innovations 2016
    Features Top 10 Innovations 2016

    This year’s list of winners celebrates both large leaps and small (but important) steps in life science technology.

  2. Gut Microbes Linked to Neurodegenerative Disease
  3. Pubic Hair Grooming Linked to STI Risk
    The Nutshell Pubic Hair Grooming Linked to STI Risk

    Observational study suggests pubic hair grooming correlates with heightened risk of acquiring sexually transmitted infections, although causation remains unclear.

  4. Naive T Cells Find Homes in Lymphoid Tissue
Rockland