Advertisement

Can't get there from here

In the 10 August Nature, Burch and Chao find that two populations of an RNA virus, derived from a single ancestral phage, repeatedly evolve towards different fitness maxima (Nature 2000, 406:625-628). The average fitness of one of the final phage populations is actually lower than that of the starting clone, suggesting that the original individual was at the peak of a local maximum of fitness. The existence of these different and non-overlapping solutions to maximizing fitness suggests that the

By | August 15, 2000

In the 10 August Nature, Burch and Chao find that two populations of an RNA virus, derived from a single ancestral phage, repeatedly evolve towards different fitness maxima (Nature 2000, 406:625-628). The average fitness of one of the final phage populations is actually lower than that of the starting clone, suggesting that the original individual was at the peak of a local maximum of fitness. The existence of these different and non-overlapping solutions to maximizing fitness suggests that the evolvability of an RNA virus is determined by which advantageous genotypes are within its mutational neighborhood.

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Thermo Scientific
Thermo Scientific
Advertisement
The Scientist
The Scientist
Life Technologies