Double-duplication evolution

In the 1 September Science Lang et al. argue that two single-domain biosynthetic enzymes appear to have evolved from gene duplication, followed by fusion, followed by a second gene duplication (Science 2000, 289:1546-1550). Both of the proteins, HisA and HisF, can be broken down into two half beta/alpha barrels. The four half barrels can be superimposed on each other, revealing 22% identical or similar residues. As both enzymes bind biphosphate substrates, each half barrel has a phosphate-bindin

By | September 6, 2000

In the 1 September Science Lang et al. argue that two single-domain biosynthetic enzymes appear to have evolved from gene duplication, followed by fusion, followed by a second gene duplication (Science 2000, 289:1546-1550). Both of the proteins, HisA and HisF, can be broken down into two half beta/alpha barrels. The four half barrels can be superimposed on each other, revealing 22% identical or similar residues. As both enzymes bind biphosphate substrates, each half barrel has a phosphate-binding motif, and HisF even exhibits limited HisA catalytic activity. Lang et al. propose that an ancestral protein motif was duplicated and fused to produce the HisA isomerase enzyme, before a second duplication and further evolution yielded the more complex HisF synthase activity.

Popular Now

  1. First In Vivo Function Found for Animal Circular RNA
  2. A Potential Remedy for the Aging Brain
    The Scientist A Potential Remedy for the Aging Brain

    In mice, injected fragments of a naturally occurring protein boost memory in young and old animals and improve cognition and mobility in a model of neurodegenerative disease. 

  3. Nature Index Identifies Top Contributors to Innovation
  4. Your Body Is Teeming with Weed Receptors
    Features Your Body Is Teeming with Weed Receptors

    And the same endocannabinoid system that translates marijuana's buzz-inducing compounds into a high plays crucial roles in health and disease outside the brain.

AAAS