Double-duplication evolution

In the 1 September Science Lang et al. argue that two single-domain biosynthetic enzymes appear to have evolved from gene duplication, followed by fusion, followed by a second gene duplication (Science 2000, 289:1546-1550). Both of the proteins, HisA and HisF, can be broken down into two half beta/alpha barrels. The four half barrels can be superimposed on each other, revealing 22% identical or similar residues. As both enzymes bind biphosphate substrates, each half barrel has a phosphate-bindin

By | September 6, 2000

In the 1 September Science Lang et al. argue that two single-domain biosynthetic enzymes appear to have evolved from gene duplication, followed by fusion, followed by a second gene duplication (Science 2000, 289:1546-1550). Both of the proteins, HisA and HisF, can be broken down into two half beta/alpha barrels. The four half barrels can be superimposed on each other, revealing 22% identical or similar residues. As both enzymes bind biphosphate substrates, each half barrel has a phosphate-binding motif, and HisF even exhibits limited HisA catalytic activity. Lang et al. propose that an ancestral protein motif was duplicated and fused to produce the HisA isomerase enzyme, before a second duplication and further evolution yielded the more complex HisF synthase activity.

Popular Now

  1. Running on Empty
    Features Running on Empty

    Regularly taking breaks from eating—for hours or days—can trigger changes both expected, such as in metabolic dynamics and inflammation, and surprising, as in immune system function and cancer progression.

  2. Athletes’ Microbiomes Differ from Nonathletes
  3. Stomach Cells Change Identity to Drive Precancerous State
  4. Mutation Linked to Longer Life Span in Men
AAAS