Fine-mapping of fearfulness

Geneticists cut their teeth on conditions controlled by single loci. The harder task is to find the many loci that work together to control a single trait. In the 7 November Proceedings of the National Academy of Sciences Mott et al. demonstrate a new method for mapping these quantitative trait loci (QTL; Proc Natl Acad Sci USA 2000, published online before print). Previous methods all have their limits: family-based studies tend to be small and so can only do coarse mapping; population-based as

By | October 31, 2000

Geneticists cut their teeth on conditions controlled by single loci. The harder task is to find the many loci that work together to control a single trait. In the 7 November Proceedings of the National Academy of Sciences Mott et al. demonstrate a new method for mapping these quantitative trait loci (QTL; Proc Natl Acad Sci USA 2000, published online before print). Previous methods all have their limits: family-based studies tend to be small and so can only do coarse mapping; population-based association studies give greater numbers (and thus potentially greater resolution) but are complicated by variable and unknown inheritance histories; and breeding studies in mice are plagued by a possible lack of segregating loci when two inbred mouse populations are used as founders. Mott et al. get around this last problem by using the progeny from an eight-way cross that was started 30 years ago and is now in its 60th generation. They use dynamic programming to calculate the probability that a given allele is descended from one of the eight progenitors. Use of single-marker association often fails because different QTL alleles occur on similar haplotypes, but multipoint analysis allows the authors to fine-map all five of the previously identified loci for fearfulness in mice. The authors propose that whole-genome fine mapping with this method would be cost-effective if 20 or more traits were mapped in parallel on the same set of mice.

Popular Now

  1. What Budget Cuts Might Mean for US Science
    News Analysis What Budget Cuts Might Mean for US Science

    A look at the historical effects of downsized research funding suggests that the Trump administration’s proposed budget could hit early-career scientists the hardest.  

  2. UC Berkeley Receives CRISPR Patent in Europe
    Daily News UC Berkeley Receives CRISPR Patent in Europe

    The European Patent Office will grant patent rights over the use of CRISPR in all cell types to a University of California team, contrasting with a recent decision in the U.S.

  3. Opinion: On “The Impact Factor Fallacy”
  4. Unstructured Proteins Help Tardigrades Survive Desiccation
Business Birmingham