Minos mutagenesis

In the 15 November EMBO Reports Klinakis et al. describe a method for insertional mutagenesis and gene tagging that uses transposon-mediated mutagenesis (TRAMM) (EMBO Reports 2000, 1:416-421). They used two plasmid vectors, one encoding the Minos transposase enzyme from Drosophila hydrei and the other carrying a drug-resistance gene flanked by Minos inverted repeats.

By | November 28, 2000

In the 15 November EMBO Reports Klinakis et al. describe a method for insertional mutagenesis and gene tagging that uses transposon-mediated mutagenesis (TRAMM) (EMBO Reports 2000, 1:416-421). They used two plasmid vectors, one encoding the Minos transposase enzyme from Drosophila hydrei and the other carrying a drug-resistance gene flanked by Minos inverted repeats. The naked DNA plasmids were transfected into human HeLa cells and about 4% of cells gave drug-resistant clones with multiple insertions. Furthermore, a Minos-based gene trap system yielded about 80,000 insertions per million transfected cells. Insect transposons could therefore be used for high frequency insertion mutagenesis of the human genome in functional genomics and high-throughput screening. The TRAMM method is an improvement on existing insertion mutagenesis techniques; it overcomes the inefficiency of plasmid vector approaches and does not require the same level of experimental expertise needed for using retroviral vectors.

Popular Now

  1. Top 10 Innovations 2016
    Features Top 10 Innovations 2016

    This year’s list of winners celebrates both large leaps and small (but important) steps in life science technology.

  2. Gut Microbes Linked to Neurodegenerative Disease
  3. Pubic Hair Grooming Linked to STI Risk
    The Nutshell Pubic Hair Grooming Linked to STI Risk

    Observational study suggests pubic hair grooming correlates with heightened risk of acquiring sexually transmitted infections, although causation remains unclear.

  4. Image of the Day: Parting Ways
    Image of the Day Image of the Day: Parting Ways

    The Allen Institute for Cell Science releases the first public collection of human induced pluripotent stem cells that have been fluorescently tagged using CRISPR.

Rockland