Hot DNA

In the December 19 Proceedings of the National Academy of Sciences, Kawashima et al. compare their sequence of Thermoplasma volcanium with existing genomic sequences of seven other archaeons, and find that thermophiles adapt to increasing heat by clustering purines and pyrimidines, and by making more basic proteins (Proc Natl Acad Sci USA 2000, 97:14257-14262). The frequency of purine or pyrimidine dinucleotides in the genomic sequences rises with increasing optimum growth temperature (OGT), as

By | December 22, 2000

In the December 19 Proceedings of the National Academy of Sciences, Kawashima et al. compare their sequence of Thermoplasma volcanium with existing genomic sequences of seven other archaeons, and find that thermophiles adapt to increasing heat by clustering purines and pyrimidines, and by making more basic proteins (Proc Natl Acad Sci USA 2000, 97:14257-14262). The frequency of purine or pyrimidine dinucleotides in the genomic sequences rises with increasing optimum growth temperature (OGT), as mixtures of the two nucleotide types are usually associated with flexible DNA. The increase in basic proteins with increasing OGT may help the bacteria resist protein aggregation, as the cytoplasmic pH of the bacteria is somewhat acidic, so acidic proteins will have little charge and be more prone to interaction and aggregation. A higher OGT also correlates with changes in the repertoire of chaperones and DNA packaging proteins, and the loss of certain metabolic pathways that have labile intermediates.

Advertisement
Advertisement

Popular Now

  1. How Fats Influence the Microbiome
  2. Censored Professor Quits
    The Nutshell Censored Professor Quits

    Alice Dreger is resigning from the faculty of Northwestern University, claiming that the administration censored her work in a faculty journal.

  3. Mitochondria Exchange
    News Analysis Mitochondria Exchange

    A decade of research on intercellular mitochondrial transfer has answered some long-standing questions and raised new ones.

  4. Opinion: Engineering the Epigenome
Advertisement
Mirus Bio
Mirus Bio
Advertisement