Advertisement
LabX
LabX

Calling all binding sites

In the 22 December Science Ren et al. combine chromatin immunoprecipitation with DNA microarrays to identify all binding sites for two budding yeast transcription activators (Science 2000, 290:2306-2309). They start by breaking open cells, cross-linking bound protein to DNA, sonicating, and immunoprecipitating with an antibody against a particular transcription factor. The isolated DNA is amplified, and the abundance of the amplified fragments is compared with a whole genome amplification using

By | December 29, 2000

In the 22 December Science Ren et al. combine chromatin immunoprecipitation with DNA microarrays to identify all binding sites for two budding yeast transcription activators (Science 2000, 290:2306-2309). They start by breaking open cells, cross-linking bound protein to DNA, sonicating, and immunoprecipitating with an antibody against a particular transcription factor. The isolated DNA is amplified, and the abundance of the amplified fragments is compared with a whole genome amplification using a DNA microarray that contains the 6,361 intergenic regions of the yeast genome. This method yields ten genes bound and induced by Gal4 (three of them never before associated with Gal4), and 29 genes bound and induced by the pheromone-response transcription activator Ste12. The 29 genes presumably represent the direct targets of Ste12, out of the more than 200 genes whose induction is Ste12-dependent. Thus this procedure allows direct effects to be distinguished from indirect effects.

Advertisement
Advertisement
QIAGEN ingenuity
QIAGEN ingenuity

Popular Now

  1. Antibody Maker Loses License Over Animal Welfare Violations
  2. ORI: Researcher Faked Dozens of Experiments
    The Nutshell ORI: Researcher Faked Dozens of Experiments

    A former scientist at the University of Michigan and the University of Chicago made up more than 70 experiments on heart cells, according to the Office of Research Integrity.

  3. Exploring Emotional Contagion
  4. Amyloid Thwarts Microbial Invaders
    Daily News Amyloid Thwarts Microbial Invaders

    Alzheimer’s disease–associated amyloid-β peptides trap microbes in the brains of mice and in the guts of nematodes, a study shows. 

Advertisement
Advertisement
Biosearch Technologies
illumina Corporate
illumina Corporate