Advertisement
The Scientist
The Scientist

Spinal axons regeneration

Replacing key growth cone components GAP-43 and CAP-23 could be an effective way to stimulate regeneration of spinal axons.

By | January 5, 2001

Finding a way to regenerate damaged axons in the spinal cord and brain may offer a treatment to many patients with neuronal trauma. The problem is that central nervous axons do not regenerate whereas peripheral nerves do, and, after an injury, peripheral neurones express genes that are not generally induced by CNS lesions. Researchers from Duke University Medical Centre, North Carolina, USA, found that some of these genes can be used for neuronal regeneration in central nervous system too. Dr JH Pate Skene and colleagues showed that co-expressing two major growth cone proteins, GAP-43 and CAP-23, elicits long axon extension by adult dorsal root ganglion neurons in vitro (Nat Neuroscience 2001 4;38-43). This expression triggered a 60-fold increase in regeneration of spinal axons in adult mice after spinal cord injury in vivo, offering hope for an effect in humans too.

Advertisement

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement
NeuroScientistNews
NeuroScientistNews

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
The Scientist
The Scientist
Advertisement
The Scientist
The Scientist
Life Technologies