Advertisement

Histone codes

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama et al. describe a role for histone methylation in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the r

By | March 19, 2001

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama et al. describe a role for histone methylation in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the recruitment of the chromodomain protein Swi6, a homolog of Drosophila HP1. Both methylation and recruitment were dependent on activity of the histone deacetylase Clr3. Chromatin assembly by Swi6/Clr4 at the mating-type locus results in silencing. Hence, sequential deacetylation and methylation of histone tails leads ultimately to epigenetic inheritance patterns.

Advertisement
Keystone Symposia
Keystone Symposia

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
ProteinSimple
ProteinSimple
Advertisement
NeuroScientistNews
NeuroScientistNews