Epi-embryonic stem cells?

Researchers have provided clues about a potentially new source of human stem cells that are physically close to the actual embryo, but miles away from the controversy surrounding its use in research. Last night, at the linkurl:Keystone meeting;http://www.keystonesymposia.org/Meetings/ViewMeetings.cfm?MeetingID=786 on stem cells, linkurl:Ursula Manuelpillai;http://www.med.monash.edu.au/ob-gyn/staff/ursulam.

By | April 1, 2006

Researchers have provided clues about a potentially new source of human stem cells that are physically close to the actual embryo, but miles away from the controversy surrounding its use in research. Last night, at the linkurl:Keystone meeting;http://www.keystonesymposia.org/Meetings/ViewMeetings.cfm?MeetingID=786 on stem cells, linkurl:Ursula Manuelpillai;http://www.med.monash.edu.au/ob-gyn/staff/ursulam.html at the Monash Institute of Medical Research in Victoria, Australia presented a poster in which they detail the potential of human amniotic epithelial cells (HAECs) in the inner membrane that protects the fetus during pregnancy. The researchers exposed HAECs to factors that nudge them to differentiate into cell types. Indeed, the cells displayed markers that suggest they differentiated into a variety of cells, such as astrocytes, neurons, hepatocytes, and pancreatic cells. "I?m not saying the cells are pluripotent, but they certainly have the markers of pluripotency," Manuelpillai told me. HAECs did not produce teratomas in mice testes -- an initially disappointing result, Manuelpillai said, since teratomas are characteristic of pluripotent cells. But upon further consideration, Manuelpillai noted that this inability might make them more useful for therapy down the road. In contrast to cells from umbilical cords, HAECs are easier to isolate and also divide more easily, and one membrane can yield 60 million cells -- significantly more than what one gets from umbilical cords, Manuelpillai said. She added that she and her colleagues have submitted the paper for publication, and plan to continue injecting the cells into diseased mice to test their therapeutic potential.

Popular Now

  1. Gut Microbes Linked to Neurodegenerative Disease
  2. Opinion: WHO’s Silence on Cannabis
  3. Top 10 Innovations 2016
    Features Top 10 Innovations 2016

    This year’s list of winners celebrates both large leaps and small (but important) steps in life science technology.

  4. Infant Microbiome: Vaginal Delivery Versus C-Section
Rockland