Advertisement

S. Korea OKs stem cells again

After a three-year moratorium on human stem cell research, South Korean officials gave the go-ahead to a new research project involving human eggs today (Apr. 29) provided that the research meets certain provisos. A national bioethics committee effectively banned research using human eggs in 2006 after Hwang Woo-Suk, a leading stem cell researcher formerly at Seoul National University who claimed to have created the first human stem cells from cloning, was shown to have manipulated and falsifie

By | April 29, 2009

After a three-year moratorium on human stem cell research, South Korean officials gave the go-ahead to a new research project involving human eggs today (Apr. 29) provided that the research meets certain provisos. A national bioethics committee effectively banned research using human eggs in 2006 after Hwang Woo-Suk, a leading stem cell researcher formerly at Seoul National University who claimed to have created the first human stem cells from cloning, was shown to have manipulated and falsified his data. South Korean officials had not granted a single stem cell research license since then. But now, a team led by Chung Hyung-min at Seoul's Cha General Hospital has been granted approval to use human eggs on four conditions: The researchers must set up an Institutional Review Board to prevent fraud and bioethics violations, focus on lab animals to minimize the use of human eggs, secure renewed written consent from egg donors, and remove references to cures in the project's title to avoid giving people a false sense of hope. "This research that we have conditionally approved today is really just the very first step towards a new academic study," said Roh Jae-Kyung, the bioethics committee chief, according to__ linkurl:AFP.;http://www.google.com/hostednews/afp/article/ALeqM5iULRF0jWhoCmJjw2SjKkp6daFIjQ __"Though we hope this will eventually become a ray of hope for those patients with an incurable disease, we want you to refrain from premature or excessive expectations." Hwang is currently on trial for fraud, embezzlement, ethics breaches, and other charges.
**__Related stories:__***linkurl:Hwang Woo-suk's new pet project;http://www.the-scientist.com/blog/display/54648/
[15th May 2008]*linkurl:All Hwang human cloning work fraudulent;http://www.the-scientist.com/news/display/22933/
[10th January 2006]*linkurl:Hwang faked results, says panel;http://www.the-scientist.com/article/display/22870/
[23rd December 2005]

Comments

Avatar of: Dan Abshear

Dan Abshear

Posts: 8

May 1, 2009

Over 100 years ago, a Russian histologist suggested stem cells be applied for scientific research. They are the human body?s equivalent of a generator, as they can renew, regenerate, and replicate under the right conditions. \n\nThe apex of cellular therapy and regenerative/reparative medicine has been reborn after an 8 year moratorium that basically halted federal funding for stem cell research with most states in the U.S. \n\nNow the NIH can award grants to scientists involved with biomedical research involving stem cell therapy through the CMS to each state in the U.S.\n\nWhile never banned, stem cell research had limited funding during this time. And this was unfortunate, because there are several likely uses of stem cells. \n\nThese uses include the replacement of tissues in the human body, as well as repairing cell types that are defective. Also, stem cells can deliver genetic therapies that are needed in certain patients.\n\nESCs are totiplotent if obtained from the morula which is a pre-blastocyst stage. Normally, the stem cells are acquired from the blastocyst itself. From this source, the stem cells can be any cell in the human body except for the placenta, and are pluripotent. \n\nEmbryonic stem cells are obtained from a 4 day old embryo called a blastocyst, and are pluripotent from this source. The blastocyst contains about 100 cells, and is not suitable at this stage for implantation into the uterine wall. \n\nThe inner core of the blastocyst has about 20 cells, and this is where stem cells are obtained. \n\nThese cells are unspecialized cells that can be developed or morphed into the over 200 cells available in the human body through differentiation, as ESCs are undifferentiated by nature. \n\nAs such, they can become any human cell, as long as they are prevented from clumping or crowding together when explanted into cultures as they are propagated. After stem cells are cultured, they are moved to what are called stem lines. \n\nUntil recently, ESCs were believed to be most beneficial instead of the adult stem cell alternative (ASC), as these stem cells are limited to application to the tissue the stem cells were obtained from only. However ASCs (somatic stem cells) now can be coerced into differentiation through plasticity (trans-differentiation). This likely will reduce if not eliminate those opposed to stem cell therapy because of moral and ethical reasons related to the utilization of ESCs.\n\nThanks to molecular biology, four transcription factors control the transfer of genetic information from DNA to RNAS to regulate gene expression. So ASCs can have the same beneficial qualities as ESCs.\n\nIn the past, viral vectors and exotic genes interfered with the purity of ASCs. Now ASCs are re-programmed using plasmids instead of viruses and oncogenes that can become detrimental for the patient treated. \n\nSo now, ASCs can safely become induced pluripotent cells with the same potential as ESCs. As a result, the ASCs are free of genetic artifacts that potentially can interfere with transgene sequences. \n\nThey are capable of, and are able to renew and reproduce with minimal effort, stem cells, under the right laboratory conditions. \n\nHuman blood can be reproduced with stem cells under the right conditions, it has been shown by researchers.\n\nSCT can also be used to investigate disease states for better treatment options.\n\nDisease-specific stem cell lines, which are those cells that are pluripotent and are created with the same genetic errors of certain diseases, are studied for this reason.\n\nSo there clearly is a huge potential for stem cell-based therapies. The first FDA approved clinical trial occurred early in 2009. This human trial will involve evaluating primarily the safety of ESCs designed to be used as treatment for spinal cord injury patients. The trial was submitted by Geron Corp.\n\nPfizer, the largest drug company, has implemented stem cell research, as they are an asset to drug discovery by creating within the organization a regenerative medicine unit. Other large pharma companies are implemented similar research protocols for the same reasons.\n\nGeron Corp. in California is the world?s leading esc developer, and financed researchers at Univ. of Wisconsin, who isolated the first human esc in 1998. \n\nStem cell therapy potentially can cure multiple sclerosis, among other disases and those with damaged human tissue. The therapy prevents the advancement of disease, as well as reverses the neurological dysfunctions associated with MS. Patients are injected with their own stem cells obtained from their bone marrow, which are called haemopoietic stem cells. \n\nThese particular stem cells are the origin of all blood cells. Further large clinical trials are needed to support these results. Studies have shown between 70 and 80 percent of MS patients who received stem cell therapy did not relapse afterwards.\n\nAllogenic, or donor transplants, have a risk of graft versus host disease. Autologous, which is the patient?s own stem cells, are preferable and most beneficial. Similar results from this autologous bone marrow transplant cellular therapy are seen with Chron?s disease as well.\n\nDuring the procedure, the immune system is reset so it is not in an autoimmune state where it attacks the human body. The process lasts about 2 months, and consists of 6phases:\n\n1. Initial chemo\n2. Release of stem cells\n3. Acquisition of stem cells\n4. Cells are then frozen until ready for transplant\n5. Second chemo to reduce leukocytes\n6. Autologous stem-cell transplant. Immune system is reset.\n\nPositive results from stem cell therapy are seen usually within a month, and patients can request another treatment about 6 months after the first treatment presently. This stem cell paradigm of therapy addresses the etiology of a disease state, instead of focusing on the symptoms only. As such, this is the practice of regenerative medicine with the implementation of SCT.\n\nSome believe ethical restraints are needed regarding the use of ESCs for therapeutic reasons. Yet they improve the quality of life of those with devastating diseases which involves suffering without any relief. \n\nSo stem cell therapy and research may be the most right and ethical thing to do for such patients. Not only is the tremedous suffering relieved with those possessed with devistating diseases, their functional ability is restored for those who receive stem cell therapy. \n\nEmbryos are acquired from fertility clinics (IVFs) that have thousands routinely stored and are abnormally fertilized. This means that they could never go on to become a human, and would be destroyed otherwise. \n\nIronically, one could argue it is inappropriate to discard what may be valuable and ethical for others, potentially. \n\nMost couples with frozen embryos would gladly give them to such research, surveys have concluded.\n\nThese embryos are believed by many to not be morally equivalent to human life, but only have the potential for life. And they are used for therapeutic cloning, known as somatic cell nuclear transfer, and not reproductive cloning. \n\nTen states have banned this cloning out of ignorance, it seems. Bioethic principles, which are beneficience, or physician-centered decisions, as well as non-maleficence, which is first do no harm, are not corrupted. \n\nFurthermore, autonomy, which is the patient?s right to determine their health, and justice or fairness remain intact.\n\nStem cells should be utilized for those terminally ill as well, many believe. Many are seeking stem cell therapy overseas due to restrictions that exist in the U.S. presently. The United Kingdom is believed to be the leader in stem cell research presently.\n\nDan Abshear\n
Avatar of: Dan Abshear

Dan Abshear

Posts: 8

May 8, 2009

Over 100 years ago, a Russian histologist suggested stem cells be applied for scientific research. \n\nThey are the human body?s equivalent of a generator, as they can renew, regenerate, and replicate under the right conditions. \n\nThe apex of cellular therapy and regenerative/reparative medicine has been reborn after an 8 year moratorium that basically halted federal funding for stem cell research with most states in the U.S. \n\nNow the NIH can award grants to scientists involved with biomedical research involving stem cell therapy through the CMS to each state in the U.S.\n\nWhile never banned, stem cell research had limited funding during this time. And this was unfortunate, because there are several likely uses of stem cells. \n\nThese uses include the replacement of tissues in the human body, as well as repairing cell types that are defective. \n\nAlso, stem cells can deliver genetic therapies that are needed in certain patients.\n\nESCs are totiplotent if obtained from the morula which is a pre-blastocyst stage. Normally, the stem cells are acquired from the blastocyst itself. \n\nFrom this source, the stem cells can be any cell in the human body except for the placenta, and are pluripotent. \n\nEmbryonic stem cells are obtained from a 4 day old embryo called a blastocyst, and are pluripotent from this source. \n\nThe blastocyst contains about 100 cells, and is not suitable at this stage for implantation into the uterine wall. \n\nThe inner core of the blastocyst has about 20 cells, and this is where stem cells are obtained. \n\nThese cells are unspecialized cells that can be developed or morphed into the over 200 cells available in the human body through differentiation, as ESCs are undifferentiated by nature. \n\nAs such, they can become any human cell, as long as they are prevented from clumping or crowding together when explanted into cultures as they are propagated. After stem cells are cultured, they are moved to what are called stem lines. \n\nUntil recently, ESCs were believed to be most beneficial instead of the adult stem cell alternative (ASC), as these stem cells are limited to application to the tissue the stem cells were obtained from only. \n\nHowever ASCs (somatic stem cells) now can be coerced into differentiation through plasticity (trans-differentiation). \n\nThis likely will reduce if not eliminate those opposed to stem cell therapy because of moral and ethical reasons related to the utilization of ESCs.\n\nThanks to molecular biology, four transcription factors control the transfer of genetic information from DNA to RNAS to regulate gene expression. So ASCs can have the same beneficial qualities as ESCs.\n\nIn the past, viral vectors and exotic genes interfered with the purity of ASCs. Now ASCs are re-programmed using plasmids instead of viruses and oncogenes that can become detrimental for the patient treated. \n\nSo now, ASCs can safely become induced pluripotent cells with the same potential as ESCs. As a result, the ASCs are free of genetic artifacts that potentially can interfere with transgene sequences. \n\nThey are capable of, and are able to renew and reproduce with minimal effort, stem cells, under the right laboratory conditions. \n\nHuman blood can be reproduced with stem cells under the right conditions, it has been shown by researchers.\n\nSCT can also be used to investigate disease states for better treatment options.\n\nDisease-specific stem cell lines, which are those cells that are pluripotent and are created with the same genetic errors of certain diseases, are studied for this reason.\n\nSo there clearly is a huge potential for stem cell-based therapies. The first FDA approved clinical trial occurred early in 2009. \n\nThis human trial will involve evaluating primarily the safety of ESCs designed to be used as treatment for spinal cord injury patients. The trial was submitted by Geron Corp.\n\nPfizer, the largest drug company, has implemented stem cell research, as they are an asset to drug discovery by creating within the organization a regenerative medicine unit. \n\nOther large pharma companies are implemented similar research protocols for the same reasons.\n\nGeron Corp. in California is the world?s leading esc developer, and financed researchers at Univ. of Wisconsin, who isolated the first human esc in 1998. \n\nStem cell therapy potentially can cure multiple sclerosis, among other disases and those with damaged human tissue. \n\nThe therapy prevents the advancement of disease, as well as reverses the neurological dysfunctions associated with MS. Patients are injected with their own stem cells obtained from their bone marrow, which are called haemopoietic stem cells. \n\nThese particular stem cells are the origin of all blood cells. Further large clinical trials are needed to support these results. Studies have shown between 70 and 80 percent of MS patients who received stem cell therapy did not relapse afterwards.\n\nAllogenic, or donor transplants, have a risk of graft versus host disease. Autologous, which is the patient?s own stem cells, are preferable and most beneficial. \n\nSimilar results from this autologous bone marrow transplant cellular therapy are seen with Chron?s disease as well.\n\nDuring the procedure, the immune system is reset so it is not in an autoimmune state where it attacks the human body. The process lasts about 2 months, and consists of 6phases:\n\n1. Initial chemo\n2. Release of stem cells\n3. Acquisition of stem cells\n4. Cells are then frozen until ready for transplant\n5. Second chemo to reduce leukocytes\n6. Autologous stem-cell transplant. Immune system is reset.\n\nPositive results from stem cell therapy are seen usually within a month, and patients can request another treatment about 6 months after the first treatment presently. \n\nThis stem cell paradigm of therapy addresses the etiology of a disease state, instead of focusing on the symptoms only. As such, this is the practice of regenerative medicine with the implementation of SCT.\n\nSome believe ethical restraints are needed regarding the use of ESCs for therapeutic reasons. Yet they improve the quality of life of those with devastating diseases which involves suffering without any relief. \n\nSo stem cell therapy and research may be the most right and ethical thing to do for such patients. Not only is the tremedous suffering relieved with those possessed with devistating diseases, their functional ability is restored for those who receive stem cell therapy. \n\nEmbryos are acquired from fertility clinics (IVFs) that have thousands routinely stored and are abnormally fertilized. This means that they could never go on to become a human, and would be destroyed otherwise. \n\nIronically, one could argue it is inappropriate to discard what may be valuable and ethical for others, potentially. \n\nMost couples with frozen embryos would gladly give them to such research, surveys have concluded.\n\nThese embryos are believed by many to not be morally equivalent to human life, but only have the potential for life. And they are used for therapeutic cloning, known as somatic cell nuclear transfer, and not reproductive cloning. \n\nTen states have banned this cloning out of ignorance, it seems. Bioethic principles, which are beneficience, or physician-centered decisions, as well as non-maleficence, which is first do no harm, are not corrupted. \n\nFurthermore, autonomy, which is the patient?s right to determine their health, and justice or fairness remain intact.\n\nStem cells should be utilized for those terminally ill as well, many believe. Many are seeking stem cell therapy overseas due to restrictions that exist in the U.S. presently. The United Kingdom is believed to be the leader in stem cell research presently.\n\nDan Abshear\n

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Advertisement
Mettler Toledo
Mettler Toledo
Life Technologies