Advertisement
RayBiotech
RayBiotech

Telomere researchers win Nobel

A trio of researchers whose work on telomeres and telomerases has helped explain how chromosomes are copied during cell division will receive the 2009 Nobel Prize in Physiology or Medicine. Their findings have advanced medical research in cancer, inherited diseases, and aging. Elizabeth Blackburn Image: Gerbil, Licensed byAttribution Share Alike 3.0 linkurl:Elizabeth Blackburn,;http://biochemistry.ucsf.edu/labs/blackburn/index.php?option=com_content&view=article&id=1&Itemid=3 a biochemist at th

By | October 5, 2009

A trio of researchers whose work on telomeres and telomerases has helped explain how chromosomes are copied during cell division will receive the 2009 Nobel Prize in Physiology or Medicine. Their findings have advanced medical research in cancer, inherited diseases, and aging.
Elizabeth Blackburn
Image: Gerbil, Licensed by
Attribution Share Alike 3.0
linkurl:Elizabeth Blackburn,;http://biochemistry.ucsf.edu/labs/blackburn/index.php?option=com_content&view=article&id=1&Itemid=3 a biochemist at the University of California, San Francisco, linkurl:Carol Greider,;http://www.hopkinsmedicine.org/pharmacology/research/greider.html a geneticist at Johns Hopkins School of Medicine, and linkurl:Jack Szostak,;http://www.hhmi.biz/research/investigators/szostak_bio.html a geneticist at Harvard Medical School will share the prize equally. It is the first time two women have shared the Nobel. "I think this is a victory for curiosity-driven science," Greider, who got the call at 5AM on her way to spinning class, told The Scientist. "We are fortunate to live in a place where we can still get funding for conducting basic research to answer fundamental questions. I feel very privileged to have been able to follow my curiosity for the past 30 years." Scientists began to understand how genes are copied, base by base, in the 1950s, but no one could figure out why the very end of a DNA strand could not be duplicated. As a young researcher at the University of California, Berkeley, studying the chromosomes of Tetrahymena, a single cell organism that commonly lives in water, Blackburn noticed a DNA sequence, CCCCAA, that was repeated several times at the ends of the chromosomes. While presenting her findings at a conference in 1980, Blackburn met Szostak, who had just observed that minichromosomes, linear DNA molecules, rapidly degrade when introduced to yeast cells. The two decided to join forces - introducing the CCCCAA sequence into the minichromosomes and then injecting them into yeast cells. The sequence, named telomere, protected the minichromosomes from degradation by keeping their ends intact, indicating the existence of a previously unknown mechanism in DNA replication. The pair of researchers linkurl:published;http://www.ncbi.nlm.nih.gov/pubmed/6286143 their results in 1982 in Cell.
Carol Greider
Image: Gerbil, Licensed by
Attribution Share Alike 3.0
Soon after, Blackburn and her then-graduate student, Carol Greider, found that an enzyme, telomerase, was responsible for the formation of the telomere DNA sequence. The enzyme's RNA component contained the CCCCAA sequence and served as a template for replication. Its presence allowed a DNA strand to copy itself completely from end to end. The two scientists published their findings in linkurl:Cell in 1985,;http://www.ncbi.nlm.nih.gov/pubmed/3907856 and linkurl:Nature in 1989.;http://www.ncbi.nlm.nih.gov/pubmed/2463488 "This research was actually Greider's PhD thesis," said linkurl:Jeremy Berg,;http://www.nigms.nih.gov/About/Director/ director of the National Institute of General Medical Sciences. "Graduate students who do fundamental research are often overlooked, but their work can make a big impact, as evidenced by today's announcement." Blackburn and Szostak went on to discover that mutations in the RNA of the telomerase enzyme led to the gradual shortening of telomeres and eventual inhibiting of cell division in Tetrahymena and yeast, respectively. Greider also showed that the aging of human cells is delayed by telomeres. The principal papers on telomeres and telomerase activity have been cited more than 2000 times, according to ISI Web of Knowledge, and have had resounding impacts on several areas of medical research. Some inherited diseases of the skin, lungs, and bone marrow, such as anemia, have been shown to be caused by telomerase defects. Scientists also initially thought the shortening of telomeres caused aging. Although aging is now believed to be the result of several different factors, research on the role of telomeres in the process remains intense.
Jack Szostak
Image: Harvard Medical School
"I am delighted, but not at all surprised," said Berg. "Their work has certainly been on the list of likely Nobel Prizes for years. It is a classic example of a fundamental problem in basic biology that was addressed in very elegant way and had renowned impact in biological and medical research." Cancer research has also benefited from the Nobel-winning trio's work. Cancer cells are able to preserve their telomeres no matter how many times they divide, unlike normal human cells that gradually lose telomeres as they age. Studies have also shown that cancer cells have increased telomerase activity. Several clinical studies are currently under way to see if destroying telomerase enzymes could help stop the spread of cancer cells. "This award was well deserved," said linkurl:Jerry Shay,;http://www.utsouthwestern.edu/findfac/professional/0,,16566,00.html a cellular biologist at the UT Southwestern Medical Center whose work investigates the use of telomerase and telomeres in disease therapies. "We're absolutely thrilled Blackburn, Greider, and Szostak were honored, and I'm excited about what it will do to help recruit new students and researchers to such a fascinating area of science." "For them to win the Nobel is fabulous," linkurl:Mark Muller,;http://www.biomed.ucf.edu/index.php?option=com_sobi2&sobi2Task=sobi2Details&catid=6&sobi2Id=20&Itemid=118 a molecular biologist at the University of Central Florida who studies telomerase as an anticancer drug target, added. "Beyond cancer research, their fundamental findings have impacted our ability to study stem cells and reproductive cloning." Blackburn, Greider, and Szostak also won the 2006 Lasker Award, often referred to as the "American Nobel." They will be presented with the Nobel Prize Medal, Diploma and $1.4 million award -- to be split three ways -- at a ceremony in Stockholm on December 10. The 2009 Nobel Prize in Chemistry will be awarded Wednesday, October 7.
**__Related stories:__***linkurl:Not faking it;http://www.the-scientist.com/article/display/53763/
[November 2007]*linkurl:Blackburn, Greider, Szostak share Lasker;http://www.the-scientist.com/news/display/24805/
[18th September 2006]*linkurl:First person: Elizabeth Blackburn;http://www.the-scientist.com/article/display/13624/
[24th March 2003]
Advertisement

Comments

Avatar of: anonymous poster

anonymous poster

Posts: 85

October 5, 2009

Wonderful news! Congratulations to all three, who deserve it well.\n\nThe telomere story is a superb example of how basic, "curiosity-driven" research (the kind whose outcomes cannot be predicted in advance, whose trajectory and pace of discovery can't be predicted in advance, the kind whose biomedical significance can't be predicted in advance, the kind that might well be deplored or ridiculed by those who don't really understand how science works) can lead to new information and understanding that radically changes the way we think about biological systems AND -- in the same breath -- opens up a fertile new field for translational and applied research. This prize is well earned and well deserved.\n\nAnd there is another reason for the scientific community to joyously applaud this particular Nobel Prize. As some of you might recall, "Blackburn was appointed a member of the President's Council on Bioethics in 2001. Her Council terms were terminated by White House directive on February 27, 2004... This was followed by expressions of outrage over her removal by many scientists." (quoted from Wikipedia). The immediate issue was stem cell research; the greater concern of the "many scientists" who expressed their outrage was the politicization of science in those years. This is a sweet victory for science and rational thought. May it be long lasting.\n\n
Avatar of: anonymous poster

anonymous poster

Posts: 1

October 6, 2009

Congratulations to Elizabeth Blackburn, Carol Greider, and Jack Szostak! \n\nIt would be good if the "TheScientist.com" authors and editors pay attention to proper English usage, and in particular, the difference between "principle" and "principal".\n\nPrincipal (adjective) means "primary" - as in "the principal of a school" or "the principal aim of a study" or "the principal papers of Blackburn".\n\nPrinciple (noun) refers to a rule, law or general truth, as in "the principles of mathematics"\n\n
Avatar of: Katherine Bagley

Katherine Bagley

Posts: 2

October 6, 2009

Thank you for bringing this to our attention. We apologize for the mix up.

October 7, 2009

\n\nTheirs could have been a fairy tale. Fairy tales are entertaining and exciting. Momentarily. Because they take us to an ?imaginative? world but then there is the real world with lights and shadows.\n\nTheirs, instead, have been a story of science. A question, an idea to explore and, in the process of exploring, they found answers that extend to areas beyond their original question, placing their story in the horizon of commonalities in mechanisms of disease. \n\nI read the announcement of their Prize at the NIH news release (see below**) and I was very pleased: \n\n** Dr. Blackburn has received NIH funding since 1978, Dr. Greider since 1990, and Dr. Szostak since 1980. The NIH has provided a total of more than $32 million to the three researchers for their study of telomeres, telomerase, and the molecular functions of cells.**\n\nI feel extremely happy for them and for science but again questioning myself about management of resources. How many more investigator-initiated grant proposals could have been funded and how many more could be funded in the future with an optimal management of public resources ???.\n\nJust a thought and a call for responsibility to government authorities.\n\n\n\n

October 7, 2009

\n\nA story of exploration and translation with **more than 32 millions* for THREE investigators initiating their research in 1978.\n\nIn Spanish we say: "Los números cantan". (Numbers speak)\n\nThis is also a story of OUTSTANDING use of public resources.

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
R&D Systems
R&D Systems
Advertisement
PITTCON
PITTCON
Life Technologies