Flies alter lice evolution

When bird-dwelling lice hitchhike on pigeon flies to spread to new host species, it can change the course of their evolution

By | May 24, 2011

How well lice are able to latch onto pigeon flies and catch a lift to new bird hosts affects how the lice evolve. Lice species carried aloft by flies spread to more species and tend to speciate at different times than their hosts, while ground-bound lice more closely coevolve with the birds they infect. The linkurl:results,;http://www.pnas.org/content/early/2011/05/16/1102129108.abstract published yesterday (May 23) online in Proceedings of the National Academy of Sciences, suggest that the coevolution of hosts and parasites can be influenced by other species in the community.
Scanning electron microscope image of a pigeon fly (Pseudolynchia canariensis) carrying two wing lice (Columbicola columbae)
Image: Courtesy of Chris Harbison
SEM courtesy of E.H. Burtt, Jr. and J. Ichida (Ohio Wesleyan University)
"You always think about coevolution as happening between just two lineages, but these lineages are often embedded in very complex communities," said evolutionary ecologist linkurl:Chris Harbison;http://www.siena.edu/pages/2014.asp of Siena College in New York, lead author on the study. "Even a simple interaction like hitchhiking on a fly can have long-term consequences in terms of longterm patterns of coevolution." At a glance, bird-dwelling feather lice species seem nearly indistinguishable, with the parasites infecting similar species, feeding upon the same feathers and dead skin, and sharing a similar lifecycle. But they can exhibit more subtle behaviors and physical features. Body lice, for example, stay close to their host's skin, digging in with their small legs. Wing lice, on the other hand, have longer legs and tend to grasp wing feathers, hiding between feather barbs to avoid being picked off during preening. Furthermore, the two lice species have distinct patterns of speciation. While body lice tend to form a new species whenever their pigeon hosts do, wing lice seem to speciate on a schedule of their own. If you overlay the phylogenetic trees of lice and their host pigeon, "body lice evolution closely follows that of the bird but wing lice evolution is decoupled," said Harbison, who taught the writer undergraduate ornithology a few years ago. "Can we figure out any ecological factors that could be driving this pretty drastic difference in coevolutionary patterns?" The obvious answer, said Harbison, was that wing lice tend to infect multiple host species. It could be that the lice are better able to reach novel hosts, or they are more successful once they arrive. linkurl:Previous research;http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2006.tb01853.x/abstract nixed the latter hypothesis -- body and wing lice were equally able to establish populations on different bird species when placed there experimentally. But some linkurl:evidence;http://www.sciencedirect.com/science/article/pii/S0020751908004062 suggested that wing lice are better than body lice at grabbing a hold of pigeon flies, parasites that feed on bird blood, providing a possible vehicle on which the wing lice spread to new bird species. To test this hypothesis, Harbison and his colleagues housed wild-caught rock pigeons with mourning doves in sheds with or without pigeon flies. While the pigeons had a full suite of ectoparasites on their bodies, the doves had been cleaned of parasites to serve as potential new hosts for the lice. In the fly-filled shed, wing lice successfully infected seven (21 percent) of the once parasite-free doves, but only one was infected by body lice. In the shed without flies, no wing lice and only one body lice infection occurred on the doves, suggesting the flies were integral in the spread of wing lice between species. "On face value, the paper is a very simple study: It's just birds in a shed with flies," said evolutionary biologist linkurl:Noah Whiteman;http://eebweb.arizona.edu/Faculty/Bios/whiteman.html of the University of Arizona who was not involved in the research. "But what it does is follow macroevolutionary pattern right down to ecological process. [That] is a tall order." C.W. Harbison and D.H. Clayton, "Community interactions govern host-switching with implications for host-parasite coevolutionary history," Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1102129108, 2011.
**__Related stories:__***linkurl:Instant Evolution;http://www.the-scientist.com/news/display/58109/
[7th April 2011]* linkurl:Evolution outside the lab;http://www.the-scientist.com/news/display/58097/
[31st March 2011]*linkurl:Astute algae, conned corals;http://www.the-scientist.com/blog/display/55554/
[31st March 2009]


Avatar of: Mike Waldrep

Mike Waldrep

Posts: 155

May 24, 2011

Interesting!I hope that everyone had both a great weekend and Armed Forces Day!
Avatar of: Richard Patrock

Richard Patrock

Posts: 52

May 24, 2011

Perhaps because the wing lice are in such a tenuous situation they are more likely to be hopping a ride. They already have the anatomical tools. Askew (Parasitic Insects, 1971) offers a number of other reasons that might influence host shifts in lice. He ends the discussion on lice with a discussion of phoresy (hitchhiking). At that point in time, Askew was under the impression that phoresy was rare, primarily because carriers are "only rarely specific parasites of the same host as the lice, and it (phoresy) offers only a slim chance of survival to the lice". Perhaps because these wing lice are on an edge already, hopping off may represent as good a choice as staying on (see suicidal aphids) whereas those that are hunkered down don't like those odds. The case that he uses as an exceptional illustration to this rule relates to starling lice which attach to the hippoboscid, Ornithomya fringillina. He points out that while O. fringillina is not host specific to starlings, since starlings are so common, this lice is likely to be given a directed ride and therefore a good chance at the right host. I suspect that lice on less common birds and with a less host specific taxi service might be less likely to take a ride. Of course, each situation has its own balancing act between dispersal and survivorship. Harbison and Clayton's study is wonderful in examining this interaction and its implications so directly.

Popular Now

  1. Running on Empty
    Features Running on Empty

    Regularly taking breaks from eating—for hours or days—can trigger changes both expected, such as in metabolic dynamics and inflammation, and surprising, as in immune system function and cancer progression.

  2. Athletes’ Microbiomes Differ from Nonathletes
  3. Stomach Cells Change Identity to Drive Precancerous State
  4. Mutation Linked to Longer Life Span in Men