Deep Tissue Treatment

A new, genetically encoded tag for electron microscopy may revolutionize studies of specific proteins in cells and tissues.

By | September 1, 2011

Light microscopy using fluorescent tagging reveals how molecules behave in living organisms, but poor resolution limits how well proteins can be localized. Electron microscopy (EM) provides high resolution, but until now has offered only limited ability to identify specific proteins.

The technique that comes closest to providing high resolution information about protein activity is immunoelectron microscopy, in which gold nanoparticles, readily visible by EM, are bound to protein-specific antibodies. But there’s a trade-off: if antibody labeling is done before fixation, detergents needed to poke holes in the plasma membrane  big enough for antibody complexes to enter the cell  irreparably damage it. If antibodies are applied after fixation, structures are more intact but the view is superficial as the nanoparticles can’t penetrate very far into the tissue slice.

Roger Tsien, Xiaokun Shu, and colleagues at the University of California, San Diego, engineered a fluorescent Arabidopsis flavoprotein—miniSOG—half the size of green fluorescent protein that can be genetically fused to a wide variety of proteins, transfected into cells, and visualized in the same cells using both light and electron microscopy to more precisely pinpoint proteins. “This method has the potential to revolutionize EM studies throughout biology,” wrote Paul Kaufman from the University of Massachusetts Medical School in his Faculty of 1000 evaluation of the technique (PLoS Biol, 9:e1001041, 2011. Read what researchers are saying).


MiniSOGGenetically encode the tag; use regular fixative methods to view under both light microscope and EMAny part of the cell
Immuno-EMDetergent, which damages the cell structure; fixative limits how far the antibodies penetrateTop surface of tissue slice; can only visualize proteins for which antibodies exist
MetallothioneinGenetically encode metallothionein; soak cellsin solutions of toxic cadmium chloride or gold chlorideMacromolecules or E. coli conditioned to tolerate toxic heavy metals
Horseradish peroxidaseGenetically encode HP; use fixative to view. Protein size limits use.Only proteins that work in the secretory vesicles

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Henrietta Lacks’s Family Seeks Compensation
  2. Broad Wins CRISPR Patent Interference Case
    Daily News Broad Wins CRISPR Patent Interference Case

    The USPTO’s Patent Trial and Appeal Board has ruled in favor of the Broad Institute of MIT and Harvard retaining intellectual property rights covered by its patents for CRISPR gene-editing technology.

  3. Humans Never Stopped Evolving
    Features Humans Never Stopped Evolving

    The emergence of blood abnormalities, an adult ability to digest milk, and changes in our physical appearance point to the continued evolution of the human race.

  4. Abundant Sequence Errors in Public Databases
Business Birmingham