Advertisement
The Scientist
The Scientist

MicroRNAs Prevent Cell Reprogramming

A group of microRNAs can inhibit the formation of induced pluripotent stem cells, and may provide a target for more efficient reprogramming of somatic cells.

By | October 24, 2011

WELLCOME IMAGES, STEPHEN ELLIMAN

A group of microRNAs known as miR-34 miRNAs prevent the reprogramming of cells by inhibiting pluripotency-associated genes, a new study published yesterday (October 23) in Nature Cell Biology has found. The findings suggest that blocking miR-34 miRNAs may lead to more efficient reprogramming of somatic cells into induced pluripotent stem cells (iPSCs).

MiR-34 production is regulated by the tumor suppressor protein p53—which is known to repress reprogramming, and thus iPSC generation, by modulating the expression of several pluripotency-associated genes. Researchers found that MiR-34 miRNAs repress somatic cell reprogramming by inhibiting some of the pluripotency-associated genes downstream of p53.

 

Advertisement
The Scientist
The Scientist

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement
Mettler Toledo
Mettler Toledo

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
The Scientist
The Scientist
Advertisement