Advertisement

A Brighter Beacon

A novel liquid laser set-up can detect single nucleotide mutations in a cancer gene.

By | April 1, 2012

image: A Brighter Beacon

Molecular beacons would be ideal diagnostics for detecting point mutations in disease genes if they weren’t so hard to distinguish. These noose-shaped DNA segments are engineered to light up when they bind to target DNA, such as a mutated cancer gene. However, it has been difficult to detect the difference between complete complementarity and binding that is mismatched by one or two nucleotides, because an imperfect match still has a chance—though a smaller one—of binding and fluorescing.

Xudong Fan and Yuze Sun of the University of Michigan bypassed the problem by creating an amplification step based on physics rather than biochemistry. They inserted the molecular beacons and target sequences that differed by one nucleotide into the head of a liquid laser, thereby replacing the laser’s light-generating crystal or usual liquid dye with the sample medium. When mismatched, the probes lit up in the laser chamber, but the fluorescence was not strong enough to create the feedback needed to initiate an emitted laser beam. But when the researchers mixed just one part of target sequence DNA with 50 parts of nontarget sequence, the laser emitted bright light, indicating a match.

The device is useful for low detection limits, says Weihong Tan at the University of Florida, but setting the threshold for laser activation will take a bit of work, so the tool is not ready for mass consumption just yet. (Angew Chem Int Ed, 51:1236-39, 2012.) .



LASER DETECTIONOptofluidic laser cavityOn/off laser (digital scale)Detection of target sequences from a pool of single-base mismatched sequences240: 1

STATS TALK
COMPARING METHODS: DETECTION READABLE OUTPUT IDEAL USE SIGNAL TO BACKGROUND RATIO
FLUORESCENCE DETECTION Regular vial or cuvette Intensity of fluorescence (analog scale) Detection of target and single-base-mismatched sequences separately ~ 1

 

 

Advertisement

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement
Panasonic
Panasonic

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Thermo Scientific
Thermo Scientific
Advertisement
Life Technologies