Mosquito Gut Bacteria to Fight Malaria

Researchers engineer a member of the insect's intestinal flora to help thwart the malaria parasite before it can infect new hosts.

By | July 17, 2012

Wikimedia Commons, CDC

For years, researchers have been altering mosquito genetics in an attempt to halt the malaria parasite’s lifecycle in the insect before it can spread the disease. But getting the modified gene or genes to spread through a population of mosquitoes has proved to be an intractable problem. Now, researchers at the Johns Hopkins Bloomberg School of Public Health are taking a different approach—introduce malaria-thwarting genetic changes into mosquito commensal flora.

“We thought that it would be easier to introduce bacteria than genes into mosquitoes in the field,” Marcelo Jacobs-Lorena told the blog Not Exactly Rocket Science (authored by Ed Yong, a regular contributor to The Scientist). Plus, the mosquito gut is the site of the malaria parasite's reproduction, a particularly vulnerable stage of Plasmodium's lifecycle.

Jacobs-Lorena and his team chose to work with Pantoea agglomerans, a harmless bacteria common to the mosquito gut, engineering it to fight the Plasmodium parasite. When the researchers introduced the engineered bacteria into mosquitoes in the lab, they found that the number of Plasmodium oocysts, the sporozoite-manufacturing cells that reside in the mosquito gut, were 85 to 98 percent lower than in uninfected mosquitoes. Fewer than 20 percent of the engineered mosquitoes acquired an infection after drinking a contaminated blood meal.

Once again, however, the challenge will be to introduce the bacteria into wild populations of mosquitoes where malaria is still a persistent killer. This problem is compounded by the fact that the engineered bacteria, working hard to produce antimalarial factors, may be less fit than the other commensals in the mosquito gut. “Mosquitoes would therefore have to be continuously exposed to large numbers of these GM bacteria in the field, for the bacteria to stand any chance of becoming a major portion of the microbes that reside in the mosquito gut,” George Dimopoulos, also of the Johns Hopkins Bloomberg School of Public Health told Not Exactly Rocket Science.

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Top 10 Innovations 2016
    Features Top 10 Innovations 2016

    This year’s list of winners celebrates both large leaps and small (but important) steps in life science technology.

  2. Gut Microbes Linked to Neurodegenerative Disease
  3. Pubic Hair Grooming Linked to STI Risk
    The Nutshell Pubic Hair Grooming Linked to STI Risk

    Observational study suggests pubic hair grooming correlates with heightened risk of acquiring sexually transmitted infections, although causation remains unclear.

  4. Image of the Day: Parting Ways
    Image of the Day Image of the Day: Parting Ways

    The Allen Institute for Cell Science releases the first public collection of human induced pluripotent stem cells that have been fluorescently tagged using CRISPR.