Advertisement

Brain Expression

Researchers map the expression patterns of 1,000 genes in the human brain.

By | August 1, 2012

image: Brain Expression OF MICE AND MEN: Comparing the gene-expression levels in human brains (top left) with similar regions in the mouse brain (bottom right), researchers find more similarities than differences.Allen Institute for Brain Science

 

EDITOR'S CHOICE IN NEUROSCIENCE

 

The paper


H. Zeng et al., “Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures,” Cell, 149:48-96, 2012.

 

 

The finding


Whole-genome sequencing has given researchers a good sense of which genes are shared between, for example, humans and mice. But little is known about how the expression patterns of these genes differ. Hongkui Zeng of the Allen Institute for Brain Science in Seattle, Washington, and colleagues took slices of human brains collected from postmortem biopsies and tested the expression of 1,000 key neuronal genes. They found that about 21 percent of the gene-expression profiles differed between the two species.

 

 

The sliver


Researchers took thin slices from regions of the brain involved in processing visual and sensory information and scanned them for the in situ expression of 1,000 genes that act as markers of cell type or are involved in disease, evolution, or cortical function. They compared gene expression of three areas of the cortex across 46 donors with corresponding mouse-brain slices, which had been analyzed previously at the Allen Institute.

 

 

The difference


The differences between humans and mice “often manifested in a cell type-specific way,” said Zeng, or involved in between-cell communications. “The disease genes are all very well conserved,” which bodes well for researchers using mice as models of disease, she says.

 

 

The impact


“The mouse model is used extensively in neuroscience research, and it’s assumed to be a surrogate for the human,” says Daniel Geschwind, a neurogeneticist at the University of California, Los Angeles. Knowing the specific differences “gives you a sense that many things are conserved, but also provides some guidance as to the ones that aren’t.”

 

 

Advertisement

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: Sandra Deo

Sandra Deo

Posts: 1

August 7, 2012

How many genes are involved in the formation of the brain?

Avatar of: James Kohl

James Kohl

Posts: 53

August 7, 2012

Species specific differences in cell type are linked via olfaction and pheromones to differences in tissue type (e.g., cells in tissues). The development of the neuroendocrine and neuroimmune systems is dependent on the central role of gonadotropin releasing hormone (GnRH) nerve cells in brain tissue that regulates the secretion of most, if not all, other hormones that have been indirectly linked from non-olfactory/pheromonal input to brain development and behavior.

The epigenetic effect of nutrient chemicals and pheromones directly links food odors and social odors/pheromones via GnRH to the beneficial effects of homeostasis or detrimental effects of inflammation (as in processes that underlie the development of some cancers). Therefore, the question to be answered is not about the number of genes that act as markers of cell type or are involved in disease, evolution, or cortical function. Indeed, the more important question to first ask is what epigenetic effects of sensory input on receptor-mediated events are directly involved in the development of genetically predisposed diseases.

When researchers examine gene expression in slices from regions of the brain involved in processing sensory information in attempts to locate species specific markers of cell types involved in disease, evolution, or cortical function, shouldn't they look first at gene expression that is altered by species-specific olfactory/pheromonal input? That might help determine both the differences and the similarities among disease processes common in species from mice to man.

Chemical ecology is, of course, responsible for adaptive evolution via ecological, social, neurogenic, and socio-cognitive niche construction (i.e., brain development). How could anything else but chemicals (nutrient chemicals and pheromones) be responsible for similarities and differences in cell types of the brain in different species?

 

Avatar of: Big Don

Big Don

Posts: 2

August 7, 2012

Didn't you know?  All brains are created *equal*.  DUMB only results from Bad Environment....yeah...

Avatar of: bensabio

bensabio

Posts: 3

August 8, 2012

 Just two.  One to form the brain, the other to ask questions like this.

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement
RayBiotech
RayBiotech

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Advertisement
NeuroScientistNews
NeuroScientistNews
Life Technologies